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1 MOTIVATION 

1.1 WHAT IS HARDWARE-IN-THE-LOOP SIMULATION ? 

 

Figure 1 Principle of Hardware-in-the-Loop Simulation 

Hardware-in-the-Loop (HIL) simulation has become a well-established verification 
technology applied in many ECU development projects today. 
By means of HIL technology function tests can be shifted to earlier development stages to 
increase the maturity of new software and/or electronics components. 
Cost and time expensive test drive cycles which have been performed in former times 
directly in vehicle or on conventional test benches can be substituted by simulation based 
operations. 
Tests of failure situations or tests of dangerous maneuvers can be shifted into the 
computer, at least in parts of the complete test program. 
The major advantage is the capability to automate these test benches. This allows to 
reproduce all test cycles and to operate these test benches 24 h per day. 

A closed control loop of today‟s automotive electronic system as shown in the left part of 
Figure 1 (Controller, output driver, actors, plant, e.g. an engine, sensors and the input side 
signal conditioning) is substituted in parts. The electrical interfaces are retained. Sensors 
and actors are either replaced by full simulated versions or they are even attached as 
original physical load component in the test bench setup. 
The plant part of the control loop, i. e. in this example the engine, is replaced completely 
by a simulation model, which can be calculated in the appropriate model precision in real-
time. 
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1.2 A TYPICAL HIL TESTBENCH 

 

Figure 2 HIL Testbench Architecture 

A typical HIL test bench consists of:  

 Host software to interactively operate the different components connected to the 
test bench.  
Operation in this sense means configuration, status control, accessing data, … . 
To be able to perform this operations also in an unattended, i.e. automated 
manner also an appropriate test automation (TA) system is applied. These TA 
systems consist of a set of components, such as: test executors, test frameworks 
to manage the parameterization of test cases, specific graphical or tabular-based 
test editors, comprehensive test libraries etc. More and more it becomes 
inevitable to integrate these HIL host software tools into other engineering data 
processing tools, e.g. for data storage, test management,  requirement 
management or bug tracking systems. 

 Driver 
The host software accesses the connected test bench components via specific 
drivers. These drivers use very heterogeneous technologies, such as: RS232, 
DLLs, (D)COM-Interfaces, TCP/IP or even GPIB. Up to now only very few of 
these driver interfaces are standardized, e.g. [ASAM MCD-3] for calibration or 
diagnostic access to ECUs. 
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 Test bench components 
First there is the real-time simulator itself. Here the simulation parts are 
calculated in the required time accuracy. Via the input-/output cards resp. the 
network interfaces (e.g. for CAN, LIN, Flexray) the real-time process is connected 
on electrical level to the electronic control unit. Missing network components, e.g. 
missing ECUs might be simulated here (so-called rest bus simulation). 
A second very essential HIL test bench component is the so-called Failure 
Injection Unit (FIU) or Electrical Error Simulation (EES) system. Test cases may 
not only comprise checking the behavior of the System Under Tests (SUT) in a 
fully functional environment. It is also important to check the SUT in case of 
electrical errors on the input and output pins.  
To be able to access ECU internal variables external calibration or diagnostics 
systems need to be integrated into the test automation environment. 

 System under Test: ECU(s) 
The last and most important part of HIL test benches is of course the system 
under test itself, i.e. the ECU or a complete network of ECUs. HIL technology is 
applied today on the one hand for component testing of single ECUs but very 
often also for integration testing of complete vehicle ECU networks. 
As ECUs are very often developed in different variants the equipment of HIL test 
benches is prepared to be adapted to these variants. 
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1.3 STANDARDIZATION POTENTIAL IN THE HIL WORKING AREA 

 

Figure 3 Standardization Potential around Hardware-in-the-Loop Simulation 

Compared to other fields of activities in the area of Automotive Electronics (AE) the scope 
of Hardware-in-the-Loop simulation had not been addressed very intensively in the past. 

Existing AE standards, such as [ASAM MCD-2 MC], [ASAM MCD-2 NET] or [ASAM MCD-
3] are used naturally, but many other interfaces or sub-functionalities provide a huge 
potential for standardization. 

The configuration and results of simulation test benches might be stored in data storage 
systems, which are comparable to other test bench areas. ASAM ODS might play a role 
here in future. 

The exchange of test descriptions and entire test libraries via a standardized XML format 
would support many additional cases described. ASAM has just started another HIL 
technology project (ASAM Automotive Test Exchange Format 1.0.0) to work on these 
issues. 

ASAM HIL API 1.0.0 addresses the standardization of the drivers of the most important 
HIL test bench components. 
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1.4 TODAY’S SITUATION 

 

Figure 4 Today’s Situation in HIL Testsystems 

HIL technology had been developed over the years by only a few suppliers. Due to 
several reasons the architecture of these HIL systems was characterized by a direct rigid 
coupling of test automation software and used test hardware.  
Therefore test cases directly depend on the used test hardware.  
The end users perspective is, that not always the „best‟ test software could be combined 
with the „best‟ testing hardware. 
Know-how could not be transferred from one test bench to the other. This resulted in 
additional training costs for employees. 
Switching to the newest testing technology was difficult because of tool specific formats 
and test hardware compatibility issues.  
This led to the consequence that the base pre-condition for an exchange of test cases, 
e.g. between OEM and supplier, was not fulfilled. 
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1.5 GOAL OF THE HIL API PROJECT  

The major goal of all HIL technology standardization efforts is to allow for more reuse in 
test cases and to decouple test automation software from test hardware. 

ASAM HIL API 1.0.0 only addresses the issue of decoupling. Therefore the reuse of test 
cases within the same test automation software on different test hardware systems should 
be achieved. This will lead to a reduction of effort for test hardware integration into test 
automation software.  
Software investments and test case development efforts can be long-term protected. End 
users may decide on test automation software system on a perspective of many years 
without the coercion of being coupled to one test hardware supplier. 

 

Figure 5 Solution Approach First Step: Standardisation of HIL API 
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1.6 TECHNOLOGICAL APPROACH 

Today‟s HIL test automation systems apply very different description technologies to 
define the test cases, e. g. the script language Python, C# or Java. 
Graphical or tabular based notations might also be used but underneath transform to the 
mentioned languages. 

ASAMs goal had always been to define technology independent standards. Following the 
approach which has been used in the [ASAM MCD-3] project first the ASAM HIL API 1.0.0 
project team decided to develop the API as a generic UML-2 model, the so-called HIL API 
reference model. 

Rules for the derivation of the market relevant Programming Language Versions for 
Python, C# and Java have been described and the so-called Technology References for 
these languages are equal work products of the standard. 

The separation of UML based reference model also allows adding other technologies later 
without the need to modify the API model itself.  

 

Figure 6 Technological Approach via a generic HIL API Model 
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2 INTRODUCTION  

2.1 ABBREVIATIONS 

(D)COM (Distributed) Component Object Model  

AE Automotive Electronics 

API  Application Programming Interface 

ASAM Association for Standardisation of Automation and Measuring 
Systems  

CAN Controller Area Network  

DLL Dynamic Link Library  

DTC Diagnostic Trouble Code 

ECU Electronic Control Unit 

EEPROM Electrically Erasable Programmable Read Only Memory 

EES Electrical Error Simulation 

ERD Entity Relationship Diagram  

FIU Failure Injection Unit (see EES) 

GPIB General Purpose Interface Bus 

HIL Hardware In the Loop 

HW Hardware 

LIN Local Interconnect Network 

PC Personal Computer 

RS232 Recommended Standard 232 (standard for serial binary data 
signals) 

SEQ Sequence Diagram 

SUT System Under Test 

SW Software 

TA Test Automation 

TCP/IP Transmission Control Protocol/Internet Protocol 

UML2 Unified Modeling Language Version 2 

XML  Extensible Markup Language 
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2.2 TECHNICAL APPROACH 

2.2.1 TECHNOLOGY INDEPENDENCE 

The object model of the HIL API is defined in UML. This UML model is mapped to different 
programming languages. As a result of the mapping process, all HIL API classes are 
available in each of the supported programming languages either as interface definitions 
or using native data types. A mapping guideline is available for each programming 
language which describes how the UML model is converted to the programming 
language. 

 

Interface definitions are available for the following programming languages:  

 C#   [HIL C# Reference] 

 Python  [HIL Python Reference] 

 Java   [HIL Java Reference]. 

2.2.2 OBJECT CREATION 

All instances of the HIL API classes are created either by a constructor or by an object 
factory.  
If a constructor is used (which may have arguments), it is explicitly modeled in the UML 
model. These constructors always have the same name as the class; also if more than 
one constructor is defined (constructor overloading). 
Classes which have no constructor must be created via an object factory. In that case, 
typically a method is available which returns an instance of the class (e.g. the 
CreateCapture method of the MAPort returns a new Capture instance). 

Destructors are only modeled if they are explicitly needed to destroy the object. 
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3 STANDARDIZED FUNCTIONALITY OF THE HIL API 

3.1 OVERVIEW 

Hil API provides manufacturer independent access to the functionalities of a HIL 
simulator. It consists of interface definitions. Each tool vendor can provide an 
implementation of these interfaces which is specific for his tool set. Thus, the user of the 
HIL API gains standardized access to the tools of different vendors. 

The HIL API covers the functional areas 

 Model access, 

 ECU access, 

 Diagnostics access, and 

 Electrical error simulation. 

Each of these functional areas is represented by one or several ports. As the initialization 
of the tools is not part of the HIL API, the initialization of the HIL system has to be done by 
the vender-specific functions. 
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3.2 INITIALIZATION 

A typical proceeding for using the HIL API for the access to a HIL simulator is depicted in 
Figure 7: 

1. The HIL simulator is configured and started by using the vendor-specific functions. 
2. Using the vendor-specific implementation of the HIL API, a port instance is 

created. 
3. After this, the standardized HIL API functions are used to access the simulator. 

HIL Simulator

Configure Simulator

StartSimulator

myDiagPort = new VendorX.DiagPort()

myVal = myDiagPort.Read (....)
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Figure 7 Getting Access to HIL API 
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3.3 PORTS OF THE HIL API 

All ports of the HIL API are derived from a common base interface Port. Figure 8 shows 
all ports, defined in this standard. 

class HIL Ports

Port

MAPort::MAPort ECUPort::ECUMPort

ECUPort::ECUCPort

DiagPort::DiagPort

EESPort::EESPort

 

Figure 8 Ports in HIL 

Table 1 gives an overview of these ports. 

Table 1 Ports 

Port description 

MAPort The Model Access port provides access to the simulation model. It is 
possible to read and to write parameters and to capture and to generate 
signals.  

DiagPort The Diagnostic port communicates with a diagnostic system to read data 
via diagnostic services from an ECU or Functional Group. 

EESPort The EES port controls electrical error simulation hardware. It allows 
setting different types of errors.  

ECUPort The ECU ports communicate with an MC system and thus provide 
access to ECU internal values. The ECU M port allows to capture and to 
read measurement variables. The ECU C port is used for calibration. 
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4 COMMON FUNCTIONALITIES 

This chapter describes functionalities of HIL API which are not specific for one port.  

 

Figure 9  Packages in Common part 

This Figure 9 shows all top level packages and the sub packages of the package 
Common of the HILAPI UML model. The most important parts of the package Common 
are described in the following sections. 
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Table 2 Packages of Common part 

Sub package name Description 

ASAMTypes Contains all basic data types which are used in the UML model, 
e.g. Boolean, string or int. 

CaptureResult Contains classes which handle the result of Capturings. 

Capturing Contains classes which do Capturing. 

Collections Contains all collection classes used in the model. 

DocumentHandling Gives an overview of all classes which are used to read or write 
content from/to the file system in different file formats. 

Error Contains common classes used for error handling. Error codes 
are defined in the sub package Enum. 

Port Gives an overview of all available ports and defines the base 
class for all ports. 

Signal, Symbol Contain classes for describing signal waveforms. Such signals 
are used for signal generation. 

ValueContainer A set of classes which are designed to store values of different 
types, e.g. scalar, matrix or map values. Together with the 
ASAMTypes and the Collection classes, the value container 
classes are the fundamental type system which is used in the 
entire UML model. 

WatcherHandling Classes being used by the capturing classes for defining trigger 
conditions. 
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4.1 VERSIONING 

Versioning of the HILAPI is done using three numbers: major version, minor version and 
revision number. The major number is the actual version, the minor number the actual 
maintenance of the version. The revision number is the revision of the maintenance. 
These numbers define the interface version of the HIL API. 
 
In addition, a build number allows a tool manufacturer to clearly version his HIL API 
implementation, independently from the HIL API version. It is of type string in order to 
provide more flexibility. 
 
The version information can be retrieved using the HILAPI class. The standard 
implementation of the HILAPI class returns the following version numbers: 

Table 3 Version number 

Number Value 

Major version 1 

Minor version 0 

Revision number 0 

Build number empty 

 
Tool manufacturers must override the base implementation and return a valid build 
identifier. 
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4.2 ASAM DATA TYPES 

ASAM data types are used in the entire UML model. These define the type system for all 
scalar basic data types. All complex data types use these base types (see e.g. package 
Common/ ValueContainer at chapter 4.4). More information about the ASAM data types is 
available in [ASAM Data Types]. 
 
The following basic data types are used in the HIL API UML model: 

 A_ASCIISTRING 

 A_BOOLEAN 

 A_BYTEFIELD 

 A_FLOAT64 

 A_INT64 

 A_UINT64 
 A_UNICODE2STRING 

The ASAM data types are included in the model in the sub package ASAMTypes: 

 

Figure 10 ASAM data types 

 

When the UML model is transformed to different programming languages (e.g. Python, 
C#, Java), the ASAM data types are mapped to native, language specific data types. 
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4.3 COLLECTIONS 

A lot of HIL API classes need collections like arrays, lists and dictionaries. The sub 
package Collections defines all collection classes used in the HIL API. All collection 
classes are derived from the base class Collection.  
 
Figure 11 gives an overview of the collection classes. 

 

Figure 11 Collection classes 

 

Collection is the base class for all collection classes. It provides functions to get the 
number of elements in the collection and to access all elements using an enumerator. 
 

Enumerator: Enumerators allow iterating over all elements of a collection. They provide a 
next() method to move to the next element in the collection. Enumerators become 
invalid if the underlying collection has been modified, e.g. because an element has been 
added or removed. 
 

The following collection classes are meant to be understood as a set of pattern classes. 
They represent different types of collection, e.g. index based collections or dictionaries. 
They are not used directly in the UML model. Instead, the concretely typed versions of 
these classes are used. These pattern classes are: 
 

 ConventionIndexedCollection represents a collection with a fixed order of 
elements. Consequently, calling the GetByIndex() method several times using 
the same index yields the same element. 
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 ConventionNamedCollection: The NamedCollection class is the template for all 
dictionaries used in the HIL API whose key is a string name. A method 
Contains() is available which allows to check if the NamedCollection 
contains an element with the given name. 

 

 ConventionValueCollection is the template for all dictionaries used in the HIL API 
whose key is an integer number. 

 

In order to avoid multiple inheritances, the template collection classes are modeled using 
a „Realize“-association (see UML-2). The methods are defined in the base classes of the 
collections, but the implementation of a derived collection type explicitly contains all 
methods of the collection class that it realizes. Figure 12 shows this using the 
SegmentSignalDescription class. The getCount() and GetEnumerator() 
methods are modeled in the collection base calls and in the 
SegmentSignalDescription class as well. 
 

 

Figure 12 Collection example: SegmentSignalDescription 
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Besides the base and pattern classes there are collection classes which are concrete 
realizations of the above described patterns. A StringNamedCollection maps a 
string name to string value, a UintNamedCollection maps string name to an 
unsigned integer value and a FloatNamedCollection a string name to a float value. 
The AnyObjectNamedCollection maps string names to any kind of object, e.g. to 
an HIL API object or to a native data type. Figure 13 illustrates this. 

 

Figure 13 Typed Collections  
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4.4 VALUECONTAINER 

4.4.1 OVERVIEW 

The ValueContainer package provides a set of container classes, which are used to store 
data values. These container classes are divided into three categories: 
 

1. The first category comprises all general container classes which are either scalars 
or which contain elements being accessed by integer based indices, e.g. vectors 
and matrices. Concrete sub classes are available for the most important data 
types like Boolean, integer, float and string. Some examples are 
ScalarFloatValue, StringVectorValue and BooleanMatrixValue. 

2. In addition, there are more application oriented classes, which are used for 
calibration access, for capturing or for signal generation. Examples are the classes 
CurveValue, MapValue and SignalGroupValue.  

3. The third category consists of named collections. These are explained in more 
detail in section 4.3. 

 

All container classes are derived from a common base class named BaseValue. Its 
method getType() allows to retrieve the concrete data type of a value container 
instance as specified by the enumeration type DataTypes. 

 

It is possible to attach meta information to a value container instance. Examples for such 
meta information are the name of the variable or the unit of the value. More detailed 
information about meta data can be found in chapter 4.4.4. 

The getValue methods return copies (not references) of the internal data objects, e.g. a 
new instance of VectorValue is returned when using the XVector property on a 
MapValue object. So the value itself cannot be changed by altering the returned 
instances. 

In the following chapters explain the different value container categories and the concept 
of meta data information in more detail. 
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4.4.2 GENERAL VALUE CONTAINER CLASSES 

General ValueContainer classes represent scalar, vector and matrix values (Figure 
14). 

class _doc_General Value classes

BaseValue

{abstract }

+ getAttributes() : Attributes

+ setAttributes(Attributes)

+ getType() : DataType

ScalarValue

{abstract }

VectorValue

{abstract }

+ getCount() : A_INT64 {abstract }

MatrixValue

{abstract }

+ getColumnCount() : A_INT64

+ getRowCount() : A_INT64

1

Values

1.. *

 

Figure 14 General Value classes 

All elements inside a composite ValueContainer class (e.g. VectorValue or 
MatrixValue) are homogenous, meaning all elements must be of the same type, 
which is specified by the class. Class names are prefixed with Int, Uint, Float, String and 
Boolean corresponding to type of the managed elements (Figure 15). 
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class _doc_Data types of v alue elements managed by Value class...

ScalarValue

{abstract }

VectorValue

{abstract }

BooleanValue

StringValue

IntValue

UintValue

FloatValue

BooleanVectorValue

StringVectorValue

IntVectorValue

UintVectorValue

FloatVectorValue

BaseValue

{abstract }

 

Figure 15 Data types of value elements managed by Value classes ScalarValue and 
VectorValue 

The ScalarValue classes IntValue, FloatValue, StringValue and 
BooleanValue represent a single value of the particular data type. 

The VectorValue classes IntVectorValue, FloatVectorValue, 
StringVectorValue and BooleanVectorValue represent an ordered sequence 
of values. The Count property returns the number of values in the collection. 

The MatrixValue classes IntMatrixValue, FloatMatrixValue, 
StringMatrixValue and BooleanMatrixValue represent a two dimensional 
array of values. The ColumnCount and RowCount properties return the number of 
values of each dimension inside the matrix. 
 

4.4.3 APPLICATION ORIENTED VALUE CONTAINER CLASSES 

Application oriented ValueContainer classes (Figure 16) are used for more 
specialized applications like calibration and capturing. 
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MapValue and CurveValue classes are widely used for calibration of curve (1D table) 
and map (2D table) values. Their X and Y vectors must be either monotonously increasing 
or decreasing and the number of rows / columns of the function values must be equal to 
the length of the Y / X vector. 

SignalValue and SignalGroupValue are used to represent captured signal data.  

class _doc_Application oriented Value classes

BaseValue

{abstract }

XYValue

Curv eValue SignalValue

SignalGroupValueMapValue

 

Figure 16 Application oriented Value classes 

4.4.4 ATTRIBUTES 

Instances of the Attributes class are used to attach meta data to 
ValueContainer objects. The information consists of a list of attribute names their 
values. The name and the value of an attribute are strings (A_UNICODE2STRING). 

class _doc_Attributes class

Attributes

+ Attributes()

+ getDescription() : A_UNICODE2STRING

+ setDescription(description :A_UNICODE2STRING)

+ getName() : A_UNICODE2SRING

+ setName(name :A_UNICODE2STRING)

+ getUnit() : A_UNICODE2STRING

+ setUnit(unit :A_UNICODE2STRING)

+ GetProperty(name :A_UNICODE2STRING) : A_UNICODE2STRING

+ SetProperty(name :A_UNICODE2STRING, value :A_UNICODE2STRING)

BaseValue

{abstract }

+ getAttributes() : Attributes

+ setAttributes(attributes :Attributes)

+ getType() : DataType

0..1

 

Figure 17 Attributes class 
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Some commonly used attributes are predefined. These are: 

 Name 

 Description 

 Unit 

It is also possible to add user-defined attributes using the methods SetProperty() 
and GetProperty().  

4.4.5 LINK TO SAMPLES 

The sample code for this chapter will be found at 
 
C# C#\SampleCode\Common\ValueContainer\ValueContainerExample.cs 
Python Python\SampleCode\Common\ValueContainerExample.py 
Java JAVA\SampleCode\Common\ValueContainer\ValueContainerExample.java 

Technology_Reference_Interfaces/C%23/SampleCode/Common/ValueContainer/ValueContainerExample.cs
Technology_Reference_Interfaces/Python/SampleCode/Common/ValueContainerExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/Common/ValueContainer/ValueContainerExample.java
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4.5 ERROR HANDLING 

4.5.1 EXCEPTION CLASSES 

 

Figure 18 Exceptions 

Errors are handled using exceptions. HILAPIException is the base class for all HIL 
API specific exception types. HILAPIException is mapped to the language native 
exception mechanism (e.g. in C#, HILAPIException is derived from 
System.Exception). 
Application oriented exception classes are derived from HILAPIException, e.g. 
MAPortException, DiagPortException (see Figure 18). These are defined in a 
separate sub-package named Error and named <portname>Exception, e.g. 
MAPortException. 
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Figure 19 Package structure 

4.5.2 ERROR CODES 

Enum Error Codes 
 
Error codes are used to uniquely identify each type of error which occurs. For each 
exception class a range of error codes is defined.  

The enumeration “ErrorCodes” in the sub package Common/Enum contains all available 
error codes. Each error code is defined by a unique unsigned error number and a unique 
name. The following ranges of error codes are available: 
 

Table 4 ErrorCode PreFixes and ErrorValue Range 

PreFix of ErrorCode Range of ErrorValue  

eCOMMON _ 1000 - 1999 

eDIAG_ 2000 - 2999 

eEES _ 3000 - 3999 

eMA _ 4000 - 4999 

eECU _  5000 - 5999 

eNW_  (reserved for further version) 6000 - 6999 

eFW_ (reserved for further version) 7000 - 7999 

 
The complete list of error codes along with their descriptions and messages can be found 
in the file ASAM_AE_HIL_BS_ErrorOverview_V1-0-0.xls (part of the version 1.0.0 
deliverables). 

ASAM_AE_HIL_BS_ErrorOverview_V1-0-0.xls
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4.6 DOCUMENT HANDLING 

The classes derived from the abstract class DocumentManager are designed to save 
and load data to/from files. Each class derived from the DocumentManager provides a 
Load() and a Save() function to store data in a particular file format. E.g. sub classes 
are defined for reading and writing signal descriptions, signal generator properties, 
capture results, and EES Port configurations. 

class _doc_DocumentHandling

DocumentManager

{abstract }

Capturing::CaptureResultWriter

{abstract }

Capturing::CaptureResultMDF40Writer

Capturing::CaptureResultReader

{abstract }

Stimulus::SignalGeneratorReader

{abstract }

Stimulus::SignalGeneratorWriter

{abstract }

Capturing::CaptureResultMDF40Reader

Stimulus::SignalGeneratorSTIReader

Stimulus::SignalGeneratorSTIW riter

Signal::SignalDescriptionsReader

{abstract }

Signal::SignalDescriptionsWriter

{abstract } Signal::SignalDescriptionsSTIW riter

Signal::SignalDescriptionsSTIReader

Capturing::CaptureResultMemoryWriter

EESPort::EESConfigurationWriter

{abstract }

EESPort::EESConfigurationReader

{abstract }

EESPort::EESConfigurationFileW riter

EESPort::EESConfigurationFileReade r

 

Figure 20 DocumentHandling in HIL 
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4.7 SIGNAL DESCRIPTION 

When testing ECUs via HIL simulation, signals play an important role in different use 
cases. In many test cases, model variables are stimulated. In other tests, variables are 
captured and the captured data has to be compared with reference signals. For these use 
cases, the HIL API introduced the classes SignalDescription, 
SignalDescriptionSet and SignalGenerator, as shown in Figure 21. 

mySignalGenerator

mySignalDescription_1 „Model\Engine \channelVar1“

mySignalDescriptionSet

mySignalDescription_1
20.0s 10.0s

mySignalDescription_2
30.0s

mySignalDescription_2 „Model\Engine \channelVar2“

 

Figure 21 SignalDescriptions and SignalGenerator 

A signal description consists of one or multiple segments, e.g. a ramp, followed by sine, 
which is denoted as "mySignalDescription_1" in the figure, or simply a constant signal 
denoted as "mySignalDescription_2". Many other segment types are also defined by the 
HIL API (see below). Such a signal description does not have any relation to variables of 
the simulation model. It can be used e.g.  as a reference signal. Multiple signals are 
aggregated in a signal description set. 

In order to use signals for stimulation, a signal generator is used. A signal generator 
relates signals to model variables and controls the signal generation process. 

When modeling signals, an advanced specification is possible: Figure 22 shows a ramp 
signal, denoted as "modulateSignal" and a sine signal ("mySignalDescription_1") whose 
amplitude is specified by the ramp. The resulting signal is depicted besides the signal 
generator. All parameters of all segment types can be specified by other signals. 
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mySignalGenerator

mySignalDescription_1 „Model\Dummy \Mod“

mySignalDescriptionSet

modulateSignal

mySignalDescription_1

5.0s

5.0s

 

Figure 22 Modulate Signal Parameter by further Signals 

Another possibility to describe signals are operational signal descriptions: An operational 
signal adds or multiplies two signals, as shown in Figure 23. 

mySignalDescriptionSet

mySignalDescription _1
20.0s 10.0s

mySignalDescription _2
30.0s

operationSignalDescription

Operation = Add

mySignalGenerator

operationSignalDescription „Model\Dummy \Mod“

 

Figure 23 SignalDescriptions and SignalGenerator 

In order to compare a signal description for example with sample data, i.e. signals that are 
defined by a couple of points in time and corresponding functional values, it is helpful to 
transform the signal description into an equivalent format (see Figure 24). Calling the 
method CreateSignalValue() on a signal description with the sample time as 
parameter, creates an according signal value (see Chapter 4.4). Calling method 
CreateSignalGroupValue() on SignalDescriptionSet creates a signal 
group value. 
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mySignalDescriptionSet

mySignalDescription _1
20.0s 10.0s

mySignalDescription _2
30.0s

CreateSignalValue(0.1)

CreateSignalGroupValue(0.1)

X

[

0; 

0.1; 

0.2; 
0.3; 

...

]

Y

[

0;

0.15; 

0.30; 
0.45;

...

]

myChannel_1

SignalValue

myChannel_2

X

[

0; 

0.1; 

0.2; 
0.3; 

...

]

Y

[

0;

0.15; 

0.30; 
0.45;

...

]

myChannel_1

SignalGroupValue

Y

[

2;

2;

2;
2;

...

]

 

Figure 24 SignalDescriptions and SignalGenerator (data transformation) 

In general the signal description is used to describe a signal for general purpose usage. A 
signal can be described by using synthetic waveform elements like ramp or sine and/or 
with elements which contain the signal points in form of numerical data.  
The entry point is the class SignalDescriptionSet which acts as a container for 
signals to group several signals to one signal-set. 
The SignalDescription is the abstract base class of 
OperationSignalDescription and SegmentSignalDescription.  
The class OperationSignalDescription adds or multiplies (depends on operation 
property) 2 signals (left and right signal). The limitation of these 2 signals was explicitly 
done for version 1.0.0 of HIL. The schema of Stimulus already allows 0..n operands. 
The SegmentSignalDescription is used to define a signal waveform based on a 
temporal sequence of different segments. Thus the SegmentSignalDescription is 
an indexed collection of signal-segments. 
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Figure 25 SignalDescription relations 

4.7.1 SIGNAL FILE READING AND WRITING 

To save the whole content of a SignalDescriptionSet or to load a complete set of 
signals into a SignalDescriptionSet there are two classes: The 
SignalDescriptionWriter and the SignalDescriptionReader. This 
concept allows it to load and save data in different formats. One format is already 
standardized in HILAPI 1.0.0, the STI-Format (see SignalDescriptionFormat.xsd). 

class DocumentHandling

DocumentHandling::DocumentManager

{abstract }

Signal::SignalDescriptionsReader

{abstract }

Signal::SignalDescriptionsSTIReader

Signal::SignalDescriptionsWriter

{abstract }

Signal::SignalDescriptionsSTIW riter

Signal::SignalDescriptionSe t

10..*

 

Figure 26 SignalDescription Reader and Writer 
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4.7.2 GENERAL REMARKS ABOUT SEGMENT-BASED SIGNALS 

A segment is the smallest unit that describes the signal form completely for a defined time 
period. Properties of a segment are: 

Type: Each segment has a read-only property type that indicates the kind of the segment 
for post-analysis (SignalSegment.getType(): SegmentTypes). 

Comment: Each segment has an optional property comment that can be used by the 
tester to write a description linked to the segment definition, for example to help to 
understand the complete signal definition. 

Duration: Most of the segments have the property duration that specifies the length in 
time. The unit of duration is second. The SignalValueSegment and the 
OperationSegment  have no duration property. 

The other segment parameters/properties are segment specific. For example the 
SineSegment has the parameters amplitude, offset, period and phase. 
All segment parameters use the Symbolic Mapping. That means the parameters accept a 
numeric value (ConstSymbol) or another channel (SignalSymbol) that is used to 
modulate a segment parameter. An example for this is the amplitude modulation of a 
SineSegment. It is not possible to modulate the duration of the segment by another 
signal, thus the duration property only accepts the ConstSymbol. 

 

class Symbol

Symbol::Symbol

{abstract }

Symbol::ConstSymbol Symbol::StringSymbol Signal::SignalSymbol

 

Figure 27 Symbol 
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Additionally segments can be combined together by operations. So you can for example 
add a ramp signal to a noise signal. This operation on can be done  by the 
OperationSegment that can be used in the same way as the native segments. 

List of segments: 

Synthetic Waveform Segments:  

 ConstSegment 

 RampSegment 

 IdleSegment 

 NoiseSegment  

 SlopeRampSegment 

 SineSegment 

 SawSegment  

 PulseSegment 

 ExpSegment  

Data Oriented Segments:  

 SignalValueSegment 

Complex Segments: 

 OperationSegment 
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4.7.3 SIGNAL SEGMENTS 

4.7.3.1 CONSTSEGMENT 

The ConstSegment is used to generate a part (segment) of the signal with a constant 
signal flow. The amplitude of the signal is on a constant value during the whole duration of 
the segment. 

Mathematical description 

Atf )(
 

A : Amplitude of the signal 

HILAPI – Description 

 

Figure 28 ConstSegment 

Value = 2.5 

Duration = 3.0 
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Parameters: 

Duration: Duration / run time of the segment 
 Unit:  Seconds [s] 
 Range:  [0 < Duration <= MAX(A_FLOAT64)] 

Value:  Value which is used as signal amplitude. 
 Unit:  - 
 Range:  [MIN(A_FLOAT64) <= Value <= MAX(A_FLOAT64)] 
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4.7.3.2 RAMPSEGMENT 

The RampSegment is used to generate a part (segment) of the signal with a ramp-
shaped signal flow. The amplitude of the signal follows a straight line according to a linear 
equation. 
The slope of the line is calculated from the given start- and stop-amplitude of the ramp 

and the duration of the segment ( y/ x). 

Mathematical description 

1
12)( yt

T

yy
tf

D

   

1y : Start amplitude 

2y : Stop amplitude 

DT : Duration 

HILAPI-Description 

 

Figure 29 RampSegment 

Start = 2.0 

Stop = 3.5 

Duration = 
3.0 
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Parameters: 

Duration: Duration / run time of the segment 
 Unit:  Seconds [s] 
 Range:  [0 < Duration <= MAX(A_FLOAT64)] 

Start:  Start value of the amplitude  
 Unit:  - 
 Range:  [MIN(A_FLOAT64) <= Start <= MAX(A_FLOAT64)] 

Stop: Stop value of the amplitude 
 Unit:  - 
 Range:  [MIN(A_FLOAT64) <= Stop <= MAX(A_FLOAT64)] 
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4.7.3.3 IDLESEGMENT  

The IdleSegment sets the signal generation into idle-mode for the given duration. 
During this idle time the signal generator will not write to the corresponding model 
variable, respectively the memory location of the model variable. 
The IdleSegment is normally used to allow other parts of the model to write to the 
variable (eg. model-i/o or user interaction). 
If the variable was not written during the idle time by some other parts of the model, the 
variable is left untouched and will keep its value. 

Mathematical description 

- 

HILAPI-Description 

 

Figure 30 IdleSegment 

Parameters: 

Duration: Duration / run time of the segment 
 Unit:  Seconds [s] 
 Range:  [0 < Duration <= MAX(A_FLOAT64)] 

Duration = 
1.0 
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4.7.3.4 NOISESEGMENT 

The NoiseSegment is used to generate a part (segment) of the signal with gaussian 
noise. That means that the amplitude of the signal is gaussian distributed. 
In each model step one noise value is calculated by using a random generator. The 
generated random value is than applied against the gaussian distribution to get amplitude 
values according to the gaussian bell-shaped curve. 

Mathematical description 

Gaussian Distribution: 

2

2

2

)(

22

1
)(

x

exf   

Box-Muller-Method: 

From two standard independent random numbers u1 and u2 in the range 0..1 (e.g. 

generated via random()) two standard normal-distributed and independent random 

numbers  z1 and z2 will be created. 

ii zx

uuz

uuz

With

)2sin()1ln(2

and

)2cos()1ln(2

212

211

  

It is possible to generate normal distributed random numbers xi with any mean and sigma 
parameters you need. 

: Mean value 

: Standard deviation 

Note: The Box-Muller-Method is used by the Python function random.gauss(mu, sigma). 



Common functionalities 

 

 

48 ASAM AE HIL Application Programming Interface for ECU Testing via 
Hardware-in-the-Loop Simulation Version 1.0.0 

 

HILAPI-Description 

 

Figure 31 NoiseSegment 

Parameters: 

Duration: Duration / run time of the segment 
 Unit:  Seconds [s] 
 Range:  [0 < Duration <= MAX (A_FLOAT64)] 

Mean:  Mean value, where the Gaussian distribution is moving 
 Unit: - 
 Range:  [MIN (A_FLOAT64) <= Mean <= MAX (A_FLOAT64)] 

Sigma: Standard deviation of the signal amplitude against the mean value 
 Unit: - 
 Range:  [MIN (A_FLOAT64) <= Sigma <= MAX (A_FLOAT64)] 

Seed:  Start value of the random generator 
 Unit: - 
 Range:   [-2147483646 <= Seed <= +2147483645] 

Mean = 3.0 

Duration=3.0 

Sigma = 1.0 
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4.7.3.5 RAMPSLOPESEGMENT 

The RampSlopeSegment is used to generate a part (segment) of the signal with a 
ramp-shaped signal flow. The amplitude of the signal follows a straight line according to a 
linear equation.  
The segment form is similar to RampSegment. Only the parameters are different. 

Mathematical description 

btmtf )(    

m : Slope of the line 

b : Offset of the line  

HILAPI-Description 

 

Figure 32 RampSlopeSegment 

Offset = 2.0 

Slope = 0.5 

Duration = 3.0 
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Parameters: 

Duration: Duration / run time of the segment 
 Unit:  Seconds [s] 
 Range:  [0 < Duration <= MAX (A_FLOAT64)] 

Offset:  Offset of the ramp 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Offset <= MAX (A_FLOAT64)] 

Slope: Slope of the ramp 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Slope <= MAX (A_FLOAT64)] 
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4.7.3.6 SINESEGMENT 

The SineSegment is used to generate a part (segment) of the signal with a sine-shaped 
signal flow. The amplitude of the signal follows a periodical sine-waveform.  

Mathematical description 

bt
T

Atf )
2

sin()(    

A : Amplitude of the Signal 

T : Cycle time 
: Initial phase shift 

b : Offset of the Signal 

HILAPI-Description 

 

Figure 33 SineSegment 

Phase=0.5 

Offset=1.0 

Duration = 3.0 

Amplitude=1.0 

Period=1.0 
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Parameters: 

Duration: Duration / run time of the segment 
 Unit:  Seconds [s] 
 Range:  [0 < Duration <= MAX (A_FLOAT64)] 

Offset:  Offset of the sine waveform 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Offset <= MAX (A_FLOAT64)] 

Period: Cycle time of the sine waveform 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Period <= MAX (A_FLOAT64)] 

Amplitude:  Amplitude of the sine waveform 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Amplitude <= MAX (A_FLOAT64)] 

Phase: Initial phase shift as positive or negative factor of the cycle time 
 Unit: - 
 Range: [-1.0 <= Phase <= +1.0] 
 (0.25 is equal to 90° phase shift, -0.33 is equal to -120° phase shift) 
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4.7.3.7 SAWSEGMENT 

The SawSegment is used to generate a part (segment) of the signal with a saw tooth 
shaped or triangle shaped signal flow. The amplitude of the signal follows a periodical saw 
tooth waveform.  

Mathematical description 
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A : Amplitude of the Signal  

T : Cycle time 

: Duty cycle (ratio of rise-time to cycle-time) 

rt : Rise time 

ft : Fall time 

: Initial phase shift 

b : Offset of the Signal  

HILAPI-Description 

 

Figure 34 SawSegment 

 

Offset = 1.0 
Period = 1.0 

Amplitude = 2.0 

Duration = 3.0 

DutyCycle=0.2
5 

Phase=0.2
5 
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Parameters: 

Duration: Duration / run time of the segment 
 Unit:  Seconds [s] 
 Range:  [0 < Duration <= MAX (A_FLOAT64)] 

Offset:  Offset of the saw tooth waveform 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Offset <= MAX (A_FLOAT64)] 

Period: Cycle time of the saw tooth waveform 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Period <= MAX (A_FLOAT64)] 

Amplitude: Amplitude of the saw tooth waveform 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Amplitude <= MAX (A_FLOAT64)] 

Phase: Initial phase shift as positive or negative factor of the cycle time 
 Unit: - 
 Range: [-1.0 <= Phase <= +1.0] 
 (0.25 is equal to 90° phase shift, -0.33 is equal to -120° phase shift) 

DutyCycle Ratio of raise-time to cycle-time as a positive factor 
 Unit: - 
 Range: [0.0 <= DutyCycle <= 1.0] 
 (use 0.5 to get a triangular shaped signal) 



 

Common functionalities 

 

ASAM AE HIL Application Programming Interface for ECU Testing via 
Hardware-in-the-Loop Simulation Version 1.0.0 

55  

 

4.7.3.8 PULSESEGMENT 

The PulseSegment is used to generate a part (segment) of the signal with a 
rectangular-shaped signal flow. The amplitude of the signal follows a periodical rectangle-
waveform. 

Mathematical description 
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A : Amplitude of the Signal  

T : Cycle time 
ht : High-time 

b : Offset of the Signal  

HILAPI-Description 

 

Figure 35 PulseSegment 

Offset = 1.0 

Amplitude=3.0 

Period=1.0 

Duty=0.75 

Duration = 3.0 

Phase=0.25 
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Parameters: 

Duration: Duration / run time of the segment 
 Unit:  Seconds [s] 
 Range:  [0 < Duration <= MAX (A_FLOAT64)] 

Offset:  Offset of the rectangle waveform 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Offset <= MAX (A_FLOAT64)] 

Period: Cycle time of the rectangle waveform 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Period <= MAX (A_FLOAT64)] 

Amplitude: Amplitude of the rectangle waveform 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Amplitude <= MAX (A_FLOAT64)] 

Phase: Initial phase shift as positive or negative factor of the cycle time 
 Unit: - 
 Range: [-1.0 <= Phase <= +1.0] 
 (0.25 is equal to 90° phase shift, -0.33 is equal to -120° phase shift) 

DutyCycle: Ratio of high-time to cycle-time as a positive factor 
Unit: - 
Range: [0.0 <= DutyCycle <= 1.0] 
(use 0.5 to get a symmetric rectangular shaped signal, use 1.0 to get a 
constant value) 
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4.7.3.9 EXPSEGMENT 

The ExpSegment is used to generate a part (segment) of the signal with an exponential-
shaped signal flow. The amplitude of the signal follows an exponential curve.  

Mathematical description 

beAtf

t

)1()(   

  

A : Amplitude of the Signal  
: Time constant (tau) 

b : Offset of the Signal  

HILAPI-Description 

 

Figure 36 ExpSegment 

Duration = 2.0 

Stop = 4.0 

Start=2.0 

Tau=0.2
5 
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Parameters: 

Duration: Duration / run time of the segment 
 Unit:  Seconds [s] 
 Range:  [0 < Duration <= MAX (A_FLOAT64)] 

Start:  Start amplitude (Offset of the Signal) 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Start <= MAX (A_FLOAT64)] 

Stop:  Stop amplitude 
           (Note: Amplitude of the Signal A = Stop – Start) 
 Unit:  - 
 Range:  [MIN (A_FLOAT64) <= Stop <= MAX (A_FLOAT64)] 

Tau:  Time constant of the e-curve  
 Unit:  Seconds [s] 
 Range:  [MIN (A_FLOAT64) <= Tau <= MAX (A_FLOAT64)] 
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4.7.3.10 SIGNALVALUESEGMENT 

The SignalValueSegment is used to generate a part (segment) of the signal which 
directly uses numerical data. The amplitude of the signal follows directly the given data-
points. 
Normally this segment is used to replay measured data.  
The numerical (respective measured) data is stored in a SignalValue object (see 
chapter 4.4) which is given during creation of the segment or during configuration of the 
segment. The duration of the segment is derived from the time vector. 
The serialization of the numerical data (e.g. SignalDescriptionSet.Save()) is 
done by generating a flat MAT-File with two vectors of type double. The first vector 
describes the time vector, and the second vector describes the corresponding signal 
amplitude values. 
The duration of the segment is implicitly derived from the time vector. 

Mathematical description 

][)( tNtf  

 

N : Array with numerical data 

HILAPI-Description 

 

Figure 37 SignalValueSegment 

Length of the data 
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Parameters: 

SignalValue: SignalValue object which contains the time-vector and the data-vector 
 Unit:  time-vector: Seconds [s], data-vector: - 
 Range:  [MIN (A_FLOAT64) <= time, data <= MAX (A_FLOAT64)] 

Interpolation: Interpolation method 
 Unit:  - 
 Range: enum InterpolationTypes 

 eFORWARD:  Next data point will be used immediately 
(staircase forward) 

 eBACKWARD:  Actual data point will be used until next data 
point (staircase backward) 

 eLINEAR:  Linear interpolation 
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4.7.3.11 OPERATIONSEGMENT (OPERATIONTYPES) 

The OperationSegment is used to generate a part (segment) of the signal which is a 
combination of two other segments. The two segments are combined by a mathematical 
operation like addition or multiplication. The amplitude of the signal follows the calculated 
result. The duration of the resulting segment is derived from the shorter segment. 

Mathematical description 

operationoptSoptStf ,)()()( 21  

 

1S : First segment / first operand 

2S : Second segment / second operand 

HILAPI-Description 

 

Figure 38 OperationSegment 

Duration = 3.0 

LeftSegment 

RightSegment 

Operation = Add 



Common functionalities 

 

 

62 ASAM AE HIL Application Programming Interface for ECU Testing via 
Hardware-in-the-Loop Simulation Version 1.0.0 

 

Parameters: 

leftSegment: left segment object (left operand s1) 
 Unit:  - 
 Range: - 

rightSegment:right segment object (right operand s2) 
 Unit:  - 
 Range: - 

Operation:  Operation which is used to calculate the corresponding signal 
 Unit:  - 
 Range:  enum OperationTypes 
  eADD: Addition (y(t) = s1(t) + s2(t)) 
  eMULT: Multiplication (y(t) = s1(t) * s2(t)) 
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4.7.4 USAGE OF SIGNAL DESCRIPTION 

The sample code for this example will be found at 
 
C# C#\SampleCode\Common\Signal\SignalExample.cs 
Python Python\SampleCode\Common\Signal\SignalExample.py 
Java JAVA\SampleCode\Common\Signal\SignalExample.java 

4.7.4.1 USING DIFFERENT SEGMENTS 

Each SegmentSignalDescription consists of one or more segments. The 
following sequence diagrams (Figure 39, Figure 40 and Figure 41) show the creation of all 
signal types. 

1. ConstSegment 
2. RampSegment 
3. RampSlopeSegment 
4. SineSegment 
5. SawSegment 
6. PulseSegment 
7. ExpSegment 
8. IdleSegment 
9. Operationsegment 
10. SignalValueSegment 

After creating instances of the segments, these instances are added to the 
SegmentSignalDescription object. 

Technology_Reference_Interfaces/C%23/SampleCode/Common/Signal/SignalExample.cs
Technology_Reference_Interfaces/Python/SampleCode/Common/Signal/SignalExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/Common/Signal/SignalExample.java
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HIL User

:SegmentSignal
Description

SegmentSignalDescription()

setName (value)

setDuration (duration)

create a signal 
consisting of 
multiple different 
segments

:ConstSegment
ConstSegment()

:RampSegment
RampSegment()

setValue (value)

Add (segment)

setDuration (duration)

setStart (value)

setStop (value)

Add (segment)

:RampSlope
Segment

RampSlopeSegment()

setDuration (duration)

setOffset (value)

setSlope (value)

Add (segment)

:Sine
Segment

SineSegment()

setDuration (duration)

setOffset (value)

setAmplitude (value)

setPeriod (value)

setPhase (value)

Add (segment)

 

Figure 39 Signal creation: Const-, Ramp- RampSlope- and SineSegment (part 1) 
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HIL User

:SegmentSignal
Description

setDuration (duration)

Signal : Saw
Segment

SawSegment()

:PulseSegment
PulseSegment()

:ExpSegment
ExpSegment()

setOffset (value)

setAmplitude (value)

setPeriod (value)

setPhase (value)

Add (segment)

setDutyCycle (value)

setDuration (duration)

setOffset (value)

setAmplitude (value)

setPeriod (value)

setPhase (value)

Add (segment)

setDutyCycle (value)

setDuration (duration)

setStart (value)

setStop (value)

Add (segment)

setTau (value)

setDuration (duration)

:IdleSegment
IdleSegment()

Add (segment)

 

Figure 40 Signal creation: Saw-, Pulse-, Exp- and IdleSegment (part 2) 
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HIL User

:SegmentSignal
Description

:Operation
Segment

OperationSegment()

:SignalValue
Segment

SignalValueSegment()

setOperation (operation)

setLeftSegment (value)

setRightSegment (value)

Add (segment)

:FloatVector
Value

FloatVectorValue()

:FloatVector
Value

FloatVectorValue()

SignalValue() : xVector : VectorValue, fcnValues : VectorValue
:SignalValue

SetValues (xVector, fcnValue)

setSignalValue (signal)

setInterpolation (interpolation)

Add (segment)

 

Figure 41 Signal creation: Operation- and SignalValueSegment (part 3) 
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4.7.4.2 CREATING AN OPERATION SIGNAL 

The next sequence diagrams (Figure 42 and Figure 43) are describing the creation of an 
OperationSignal in detail. It consists of two SegmentSignalDescriptions 
which are combined by the given operation. The SignalDescriptions itself can 
have more than one signal segment inside. In this case the first has 2 signal segments 
(RampSegment and SawSegment) and the second has only one signal segment 
(SineSegment). The operation in this example is Multiplication. 

HIL User

:OperationSignal
Description

OperationSignalDescription()

setName (value)

This method creates 
internally two signals 
and returns a third 
signal multiplaying 
the other two ones

setDuration (duration)

Add()

SegmentSignalDescription()

SegmentSignalDescription()

SegmentSignalDescription()

setStartValue (value)

setStopValue (value)

 

Figure 42 Create an OperationSignal (part 1) 
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Figure 43 Create an OperationSignal (part 2) 
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4.7.4.3 CREATING A WOBBLE SIGNAL 

In this example (Figure 44) a periodic signal is created. The frequency property is 
described by a saw signal, so that the sine signal is wobbling. 

HIL User

periodSignal : Segment
SignalDescription

SegmentSignalDescription()

This method creates 
sine signal whose 
period changes over 
time. Here the 
frequency is described 
by a saw signal.

setDuration (duration)

Add (segment)

SawSegment()

setOffset (value)

setAmplitude (value)

setPeriod (value)

setDutyCycle (value)

setPhase (value)

SegmentSignalDescription()

SineSegment()

setDuration (duration)

Add (segment)

setOffset (value)

setAmplitude (value)

setPeriod (value)

setPhase (value)

add the 
SawSegment

set as parameter the 
periodSignal

 

Figure 44 Create a wobbling signal 
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4.7.4.4 SIGNAL DESCRIPTION SET 

In this example (Figure 45) the access to a signal description set is shown. Two signal 
descriptions, already created before, are added to the signal description set. Then the set 
is queried for the names and the contained descriptions. Each of the descriptions is 
converted into a SignalValue object. 

HIL User

SignalDescription1
: SignalDescription

This method creates a 
signal description set 
containing two signals. 
Further this example 
shows how to access 
the elements of a signal 
description set.

Add (signal)

SignalDescriptionSet()

getNames() : A_UNICODE2STRING[]

Contains (name) : A_BOOLEAN

CreateSignalValue (sampleRate) : SignalValue

SignalDescription2
: SignalDescription

:Signal
DescriptionSet

Add (signal)

CreateSignalValue (sampleRate) : SignalValue

GetByName (name) : SignalDescription

SignalDescription1

SignalDescription2

 

Figure 45 Create and query a SignalDescriptionSet 



 

Common functionalities 

 

ASAM AE HIL Application Programming Interface for ECU Testing via 
Hardware-in-the-Loop Simulation Version 1.0.0 

71  

 

4.7.4.5 LOADING THE SIGNAL DESCRIPTION 

The Figure 46 shows the alternative way to get a signal description set: via loading an 
existing set from a STI file. Please, see SignalDescriptionFormat.xsd and SchemaDoc for 
the definition and a description of the STI file format. The output of this example is written 
to file SignalDescriptionSet.sti. From this file, the MAT file VectorData.mat is referenced, 
containing sample data. 

HIL User

:SignalDescriptionSet

This method loads a 
signal description set.

SignalDescriptionsSTIReader (fileName)

Load (reader)

:SignalDescriptions
STIReader

SignalDescriptionSet()

 

Figure 46 Load a SignalDescriptionSet 

4.7.4.6 SAVING THE SIGNAL DESCRIPTION 

Figure 47 shows how to save a signal description set to a file for further reuse. Again, see 
SignalDescriptionFormat.xsd and SchemaDoc for the definition and a description of the 
STI file format. 

HIL User

:SignalDescriptionSet

This method saves a 
signal description set.

SignalDescriptionsSTIWriter (fileName)

Save (writer)

:SignalDescriptions
STIWriter

 

Figure 47 Save signal description set 
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4.8 WATCHER 

4.8.1 GENERAL 

The Watcher is conceptually designed as a generic event generator. It can be used e.g. 
for the trigger definition of captures. 

class WatcherHandling

ConditionW atcher

+ ConditionWatcher()

+ getCondition() : A_UNICODE2STRING

+ setCondition(condition :A_UNICODE2STRING)

+ getDefines() : StringNamedCollection

+ setDefines(defines :StringNamedCollection)

Collections::StringNamedCollection

+ getCount() : A_UINT64

+ getNames() : A_UNICODE2STRING[]

+ Add(name :A_UNICODE2STRING, item :A_UNICODE2STRING)

+ Contains(name :A_UNICODE2STRING) : A_BOOLEAN

+ GetByName(name :A_UNICODE2STRING) : A_UNICODE2STRING

+ GetEnumerator() : Enumerator

+ RemoveAll()

+ RemoveByName(name :A_UNICODE2STRING) : A_UNICODE2STRING

Watcher

{abstract }

DurationW atcher

+ DurationWatcher(duration :A_FLOAT64)

+ getDuration() : A_FLOAT64

+ setDuration(duration :A_FLOAT64)

1

Def ines
1

 

Figure 48 Watcher 

HIL API distinguishes between 2 watcher types: ConditionWatcher and 
DurationWatcher. 

DurationWatcher 

The DurationWatcher fires after a specified duration relative to the start of capture. 
No matter which type of start occurs, manual or triggered. 
This watcher type can only be used in Capture StopTrigger, because it is relative to the 
start of capturing. 
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ConditionWatcher 

For the definition of a ConditionWatcher, a condition and zero, one, or multiple 
defines are set.  
A define maps a name to a model path. The advantage of using defines is that these 
names can be used in the definition of the condition. This makes a condition more 
readable for humans and further leads to a decoupling of the test from the model. All 
defines must be added to a String collection and then added as one object to the 
ConditionWatcher. The condition and all defines are described as strings. 
 

e.g. "velocity" mapped to "Model Root/Subsystem/Vel/Value" 

A condition defines when a ConditionWatcher fires. The syntax of the condition is 
defined in [ASAM Expression]. The condition syntax will be validated inside the 
setCondition method. The condition is cyclic examined after start of the Watcher. If 
the condition is true the ConditionWatcher fires. 
 

e.g. velocity > 100 

The Watcher itself has no states. It only triggers the Capture with an event (see Capture 
state diagram in the chapter above). 

4.8.2 USAGE IN CAPTURE 

For capturing, the Start and Stop trigger can be set via a Watcher. 
The Start trigger can only be a ConditionWatcher. 
The Stop trigger can be of both types, because the DurationWatcher needs a 
defined start. 

The Start and Stop trigger can be set in Capture State eCONFIGURED. After starting the 
capturing it stays in eACTIVATED until the Start trigger fires. To stop the capturing also a 
trigger can be set. 
 
 



Common functionalities 

 

 

74 ASAM AE HIL Application Programming Interface for ECU Testing via 
Hardware-in-the-Loop Simulation Version 1.0.0 

 

4.9 DATA CAPTURING 

4.9.1 GENERAL APPROACH 

Capturing is a process of acquiring data in a continous data stream. It guarantees that all 
process data can be retrieved as they occur related to the real-time service resp. to the 
real-time task. 
The classes in the Capturing and in the Capture Result package are used to define 
captures, to control the execution of capturing and to obtain the measured data as results. 
They are located in the Common package as they are used for the Model Access Port as 
well as for the ECU M Port. 

4.9.2 CAPTURING 

The main class of the Capturing package is the class Capture (Figure 49). It is used to 
define captures and to control the execution of capturing. 

class Capture

Capture

+ getCaptureResult() : CaptureResult

+ getBookmarkDefinitions() : BookmarkDefinitionCollection

+ setBookmarkDefinitions(bookmarkDefinitions :BookmarkDefinitionCollection)

+ getPort() : Port

+ getState() : ECaptureState

+ getMinBufferSize() : A_INT64

+ setMinBufferSize(minBufferSize :A_INT64)

+ getVariables() : A_UNICODE2STRING[]

+ setVariables(variableNames :A_UNICODE2STRING[])

+ AddBookmarkNow(message :A_UNICODE2STRING)

+ ClearConfiguration()

+ Fetch(whenFinished :A_BOOLEAN) : CaptureResult

+ SetStartTriggerCondition(triggerDefinition :ConditionWatcher, delay :A_FLOAT64)

+ SetStopTriggerCondition(triggerDefinition :Watcher, delay :A_FLOAT64)

+ Start(writer :CaptureResultWriter)

+ Stop()

 

Figure 49 The class Capture 

4.9.2.1 CAPTURE 

An instance of class Capture represents a capture definition. It does not have any 
constructors. A capture is defined by the port for which a capture shall be defined 
(MAPort or ECUMPort).  The capture is defined by setting 

 the variables to be captured, 

 bookmark definitions, 

 the minimal buffer size, 

 the start trigger condition including a delay, and 

 the stop trigger condition including a delay. 

After configuration of the Capture object, the method Start() is called to activate the 
start trigger. After activating the Capture object, the capturing starts at the moment the 
trigger condition becomes true. In case no start trigger is set, the capturing starts 
immediately after calling method Start(). Note that the method Start() is an 
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asynchronous (non-blocking) method. It returns immediately after being called – even if 
the capturing has not been started yet.  

The capturing is stopped either when the stop trigger fires or by calling the method 
Stop(). Note that the start trigger is defined by a ConditionWatcher object, the 
stop trigger is defined either by a ConditionWatcher or by a DurationWatcher 
object (see Chapter 4.8). This allows stopping a capturing after a specific amount of time 
or in dependence of a specific boolean condition. In case no stop trigger is set, the 
capturing runs until the method Stop() is called. 

If the trigger condition of the start trigger becomes true again during the capturing or after 
ending the capturing, this does not have any influence to the capturing or its result. The 
same holds true for the stop trigger: If it becomes true again after the capture ended, this 
does not influence the capturing or its result. 

Furthermore, the class Capture provides methods to obtain the captured data and to 
observe the current state of the capturing, e.g. to check if the start trigger occurred 
already. 

Special cases: Delayed Triggering 

When setting a start or a stop trigger for a Capture object, it is possible to set a delay. In 
case the delay is not zero, this leads to the following behavior, as depicted in the following 
Figure 50: 
 

-

implicit “max duration”

t

delay

+

implicit “min duration”
- +

start trigger event stop trigger event

 

Figure 50 Start and Stop Trigger used 

If the delay for the start trigger is positive, the capturing starts the specified amount of time 
after the start trigger became true – or in case no start trigger has been specified, the 
capturing starts the specified amount of time after the Start() method has been called. 
If the delay for the start trigger is negative, the capturing starts the specified amount of 
time before the start trigger occurred, i.e. the capture result will contain even values 
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before the start trigger became true. Obviously, this case is limited: It is not possible to 
obtain measured values which occurred before the call of the Start() method. 

If the delay for the stop trigger is positive, the capturing stops the specified amount of time 
after the stop trigger occurred (or Stop() is called resp.). If it is negative, it stops the 
specified amount of time before, i.e. the capture result will not contain the measured 
values that occurred during the delay time before the stop trigger occurred (or Stop() is 
called resp.). 

4.9.3 CAPTURE RESULT 

class CaptureResult Handling

CaptureResul t

+ CaptureResult()

+ CaptureResult(reader :CaptureResultReader)

+ getMetaData() : StringNamedCollection

+ getSignalGroupNames() : A_UNICODE2STRING[]

+ ExtractSignalValue(signalGroupName :A_UNICODE2STRING, variable :A_UNICODE2STRING) : SignalValue

+ GetBookmarkVectorByName(name :A_UNICODE2STRING) : SignalValue

+ GetMetaData() : StringNamedCollection

+ GetSignalGroupValue(identifier :A_UNICODE2STRING) : SignalGroupValue

+ Open(reader :CaptureResultReader)

+ Save(writer :CaptureResultWriter)

Collections::StringNamedCollection

+ getCount() : A_UINT64

+ getNames() : A_UNICODE2STRING[]

+ Add(name :A_UNICODE2STRING, item :A_UNICODE2STRING)

+ Contains(name :A_UNICODE2STRING) : A_BOOLEAN

+ GetByName(name :A_UNICODE2STRING) : A_UNICODE2STRING

+ GetEnumerator() : Enumerator

+ RemoveAll()

+ RemoveByName(name :A_UNICODE2STRING) : A_UNICODE2STRING

MetaData

0..1

 

Figure 51 Capture results 

CaptureResult 

A CaptureResult object holds the data captured by a Capture object. It provides 
access to objects of type ValueContainer::SignalGroupValue which holds the 
sampled data. 

MetaData 

Via the MetaData association, additional information can be added for the 
CaptureResult. 

4.9.4 BOOKMARK HANDLING 

The Capturing package contains also the class BookmarkDefinition to define 
bookmarks. Bookmarks are special marks for captured data, when specific conditions 
become true. 
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Figure 52 Bookmark handling 

Capture::BookmarkDefinitionCollection 

The class BookmarkDefinitionCollection is the collection to hold the 
BookmarkDefinition objects, defined for a Capture object. 

Capture::BookmarkDefinition 

BookmarkDefinition objects define specific conditions to be observed during 
capturing. In case such a condition becomes true during capturing, a mark is set in the 
CaptureResult object. Besides the ConditionWatcher object that defines the 
condition to be observed, a bookmark definition consists of a name and a message. Both 
are used by the capture result object (see below). 
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CaptureResultHandling::Bookmarks Association 

class CaptureResult Handling

CaptureResul t

+ CaptureResult()

+ CaptureResult(reader :CaptureResultReader)

+ getMetaData() : StringNamedCollection

+ getSignalGroupNames() : A_UNICODE2STRING[]

+ ExtractSignalValue(signalGroupName :A_UNICODE2STRING, variable :A_UNICODE2STRING) : SignalValue

+ GetBookmarkVectorByName(name :A_UNICODE2STRING) : SignalValue

+ GetMetaData() : StringNamedCollection

+ GetSignalGroupValue(identifier :A_UNICODE2STRING) : SignalGroupValue

+ Open(reader :CaptureResultReader)

+ Save(writer :CaptureResultWriter)

XYValue

ValueContainer::SignalValue

+ SignalValue(xVector :VectorValue, fcnValues :VectorValue)

Bookmarks

0..*

 

Figure 53 Bookmark Association 

In case BookmarkDefinition objects have been created and referenced by a 
Capture object, the capturing process observes if the bookmark conditions become true 
during the capturing. For each bookmark definition whose condition became true at least 
once during the capturing, a SignalValue object is created and referenced via the 
Bookmarks association from CaptureResult. In this SignalValue, the time stamps 
when the bookmark occurred, is stored in the xVector, the message from the bookmark 
definition is stored as fcnValue. The SignalValue object  is accessible via the 
CaptureResult object and its Bookmarks are referenced using the name, specified in 
the bookmark definition. 

Furthermore, it is possible to set bookmarks manually by calling the Capture object's 
method AddBookmarkNow(). This leads to another SignalValue object, referenced 
by the CaptureResult object via the Boomarks association. It can be accessed using 
the default name "ManualBookmarks". The message can be set for each call of the 
AddBookmarkNow() method. 

Figure 54 shows a schematic overview of a possible capture result: It shows the 
CaptureResult object, containing the measured data, and 3 SignalValue objects 
containing bookmarks. The first bookmarks has been defined with the name "name1" and 
the message "temp > 80". The second bookmarks has been defined with the name 
"name2" and the message "Attention!". Furthermore some manual bookmarks have been 
fired: The first one at point of time 3 with the message "msg1", the second one at point of 
time 5 with the message "msg2". Note that the SignalValue objects, containing the 
bookmarks, do only hold the points of time, when bookmarks occurred. Their xVector is 
usually different from the xVector of the CaptureResult object. 
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Figure 54 Bookmarks and Capture Results 
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4.9.5 DOCUMENT HANDLING FOR CAPTURE DATA 

class _doc_DocumentHandling for Capture Data

DocumentHandling::DocumentManager

{abstract }

CaptureResultReader

{abstract }

CaptureResultWriter

{abstract }

CaptureResultMemoryWriterCaptureResultMDF40WriterCaptureResultMDF40Reader

 

Figure 55 Document Handling 

CaptureResultReader & CaptureResultWriter 

Abstract super classes for the concrete reader and writer classes. These classes provide 
a Load or a Save method resp. to load and to save CaptureResult objects. 

CaptureResultMDF40Reader 

This class handles the loading of MDF 4.0.0 files [ASAM MDF]. The loaded data structure 
is stored in a CaptureResult object.  

CaptureResultMDF40Writer 

This class handles the saving of CaptureResult objects compliant to the MDF 4.0.0 
format.  

CaptureResultMemoryWriter 

In case a CaptureResult is not stored in the file system during the capturing process, 
an object of the CaptureResultMemoryWriter class is used as writer instance. 
Instead of streaming the capture to disk, the CaptureResult is held in the RAM. 
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4.9.6 STATE DIAGRAM OF CAPTURING 

stm Capturing

Initial

eCONFIGURED

eACTIVATED

eRUNNING

eFINISHED

Capture::

AddBookmarkNow

Capture::Fetch

Capture::Stop

Capture::ClearConfiguration

Capture::AddBookmarkNow

measurement duration reached

stop trigger becomes true

Capture::Fetch

Capture::Stop

Capture::ClearConfiguration

Capture::Fetch

Capture::Stop

Capture::ClearConfiguration

start trigger becomes true

Capture::

setVariables

SetStartTriggerCondition

SetStopTriggerCondition

getBookmarkDefinitions()

.Add/Remove/..

Capture::

getCaptureResult

Capture::ClearConfiguration

Capture::Start

ECUMCPort::CreateCapture

MAPort::CreateCapture

 

Figure 56 Capturing state diagram 

eCONFIGURED 

After creation, a Capture object is in state eCONFIGURED. In this state, the capturing is 
defined / configured. Usually, it is started when configuration has been done. 

eACTIVATED 

In this state, the capture waits for the start trigger to become true. When this happens, the 
capturing switches to state eRUNNING. 

eRUNNING 

While residing in this state, data is captured until the stop trigger holds or until Stop() is 
called manually.  

eFINISHED 

In this state, the capturing is finished. The captured data is still available to be fetched. 
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4.9.7 USAGE OF CAPTURING 

The sample code for this example will be found at 
 
C# C#\SampleCode\Common\Capturing\CaptureExample.cs 
Python Python\SampleCode\Common\CaptureExample.py 
Java JAVA\SampleCode\Common\Capturing\CaptureExample.java 

Capturing with Watcher 

Figure 57, Figure 58 and Figure 59 show how to use capturing. First, a Capture object 
has to be configured: Here, the instance of the capture object is created by an instance of 
the MAPort. Then, all variables that shall be captured are added to the capture's list of 
variables. To define the beginning and the end of the capture, two watcher objects are 
created. For a simple human understanding of the trigger conditions, defines are created. 
A define relates a name to the path of a model variable. These names are used in the 
conditions of the watcher objects. Finally, the watcher objects are set as start and stop 
triggers for the Capture object. 
 

Technology_Reference_Interfaces/C%23/SampleCode/Common/Capturing/CaptureExample.cs
Technology_Reference_Interfaces/Python/SampleCode/Common/CaptureExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/Common/Capturing/CaptureExample.java
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Figure 57 Usage of capturing with Watcher (part 1) 

At the beginning of Figure 57, bookmarks are defined for the capturing: First, two other 
ConditionWatcher objects are created. Then, each of these ConditionWatcher 
objects plus a name and a message are used to create a BookmarkDefinition 
object. Finally, the instances of BookmarkDefinition added to the Capture's 
collection of bookmark definitions. 
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Figure 58 Usage of capturing with Watcher (part 2) 
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After setting the minimal buffer size, an MDF 4.0.0 writer for capture results is created. 
Starting the capture with this writer causes the capture to stream the captured data 
directly to disk using the MDF 4.0.0 format [ASAM MDF]. During capturing, data is fetched 
and manual bookmarks are added. The capture is ended manually, i.e. independent of the 
stop trigger, by calling the Capture's Stop() method. Finally, the Capture provides the 
capture result and its configuration is cleared. 
 

HIL User

:MAPort :Capture

set Definitions to 
Collection

Add (name, item)

Add (name, item)

: BookmarkDefinition
Collection

setBookmarkDefinitions (bookmarkDefinitions)set Bookmark
Definitions

setMinBufferSize (minBufferSize)set minBufferSize

create 
CaptureWriter

CaptureResultMDF40Writer (fileName) :CaptureResult
MDF40Writer

Start (Writer)start capturing

do something and 
poll the state, fetch 
result and 
AddBookmarkNow 
until it is not 
eRunning anymore

Stop()stop capturing

getCaptureResult() : CaptureResult
get complete 
aquired data

getPort() : Portget port

getVariables() : A_UNICODE2STRING[]
get variables

Fetch (whenFinished) : CaptureResult

getState() : ECaptureState

getState() : ECaptureState

AddBookmarkNow (message)

ClearConfiguration()clear configuration

 

Figure 59 Usage of capturing with Watcher (part 3) 
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5 MODEL ACCESS PORT 

5.1 USER CONCEPT 

5.1.1 GENERAL 

The Model Access port is the central point for managing access to the model, simulated 
on the HIL simulator. This port provides functionality for read- and write-access to the 
model, to set up capturings and stimuli, and to manage model variables. 

When using this port, it is required that all initialization of the HIL simulator, like download 
and start of the model, has been done previously. 

The ModelAccessPort-package is related to its sub-package "Stimulus" and to the 
packages "Common:Capturing" and "Common:CaptureResult". The two latter ones are 
not sub-packages of ModelAccess as they are also used by the ECUPort. 

5.1.2 MODEL ACCESS PORT 

class MAP...

MAPort

+ MAPort(configurationDict :StringNamedCollection)

+ getTaskNames() : A_UNICODE2STRING[ ]

+ getVariableNames() : A_UNICODE2STRING[]

+ CreateCapture(task :A_UNICODE2STRING) : Capture

+ CreateSignalGenerator() : SignalGenerator

+ GetDataType(variableName :A_UNICODE2STRING) : DataType

+ IsReadable(variableName :A_UNICODE2STRING) : A_BOOLEAN

+ IsWritable(variableName :A_UNICODE2STRING) : A_BOOLEAN

+ Read(variableName :A_UNICODE2STRING) : BaseValue

+ Write(variableName :A_UNICODE2STRING, value :BaseValue)

Port::Port

 

Figure 60 Model Access Port 

Class MAPort 

On the one hand, this class provides general functionality like for example functionality to 
get information about available model variables, their readability and writeability and to 
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read and write model variables. On the other hand, it provides initialization functionality to 
create Capture and SignalGenerator instances. 

5.1.3 STIMULUS 

class Stimulus

SignalGenerator

+ SignalGenerator()

+ SignalGenerator(reader :SignalGeneratorReader)

+ getAssignments() : StringNamedCollection

+ getElapsedTime() : A_FLOAT64

+ getSignalDescriptionSet() : SignalDescriptionSet

+ setSignalDescriptionSet(value :SignalDescriptionSet)

+ getState() : SignalGeneratorState

+ setAssignments(assignments :StringNamedCollection)

+ DestroyOnTarget()

+ LoadToTarget()

+ Load(reader :SignalGeneratorReader)

+ Pause()

+ Save(writer :SignalGeneratorWriter)

+ Start()

+ Stop()

Collections::StringNamedCollection

+ getCount() : A_UINT64

+ getNames() : A_UNICODE2STRING[]

+ Add(name :A_UNICODE2STRING, item :A_UNICODE2STRING)

+ Contains(name :A_UNICODE2STRING) : A_BOOLEAN

+ GetByName(name :A_UNICODE2STRING) : A_UNICODE2STRING

+ GetEnumerator() : Enumerator

+ RemoveAll()

+ RemoveByName(name :A_UNICODE2STRING) : A_UNICODE2STRING

1

Assignments

1

 

Figure 61 SignalGenerator 

Class SignalGenerator 

A SignalGenerator defines stimuli and manages their execution. For the definition of 
a stimulus, a SignalDescriptionSet is referenced by the SignalGenerator. 
The signals from the SignalDescriptionSet are assigned with model variables in 
the "Assignments" collection. For the management of the stimulus, functionality is 
provided for downloading the stimulus to the HIL simulator, for starting, stopping, and 
pausing it and for observing its current state. 
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5.1.4 DOCUMENT HANDLING 

class Stimulus

SignalGeneratorReader

{abstract }

+ Load(signalGenerator :SignalGenerator*)

SignalGeneratorSTIReader

+ SignalGeneratorSTIReader(fi leName :A_UNICODE2STRING)

+ getFileName() : A_UNICODE2STRING

+ setFileName(fileName :A_UNICODE2STRING)

SignalGeneratorWriter

{abstract }

+ Save(signalGenerator :SignalGenerator)

DocumentHandling::DocumentManager

{abstract }

SignalGeneratorSTIW riter

+ SignalGeneratorSTIWriter(fi leName :A_UNICODE2STRING)

+ getFileName() : A_UNICODE2STRING

+ setFileName(fileName :A_UNICODE2STRING)

 

Figure 62 Document Handling 

SignalGeneratorReader & SignalGeneratorWriter 

These classes are abstract super classes for the concrete reader and writer classes. 
These classes provide a Load or a Save method resp. to load and to save 
SignalGenerator objects. 

SignalGeneratorSTIReader 

This class handles the loading of a SignalGenerator object stored in a STI files. STI 
is a file format for SignalGenerator objects which is also part of the HIL API 
standard. The loaded data structure is stored in a SignalGenerator object. 

SignalGeneratorSTIWriter 

This class handles the saving of SignalGenerator objects in STI format. STI is a file 
format for SignalGenerator objects which is also part of the HIL API standard. 
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5.1.5 STATE DIAGRAM OF SIGNAL GENERATOR 

The state of the SignalGenerator class can be queried at any time by the method 
SignalGenerator.getState(). 

stm Stimulus

eREADY

eRUNNING

eSTOPPED

ePAUSED

Final

eIN_CONFIGURATION

eFINISHED

SignalGenerator::DestroyOnTarget

SignalGenerator::Start()

destruction of SignalGenerator

SignalGenerator::LoadToTarget

configuration methods

on SignalGenerator

SignalGenerator::DestroyOnTarget

SignalGenerator::Stop()

SignalGenerator::DestroyOnTarget

SignalGenerator::Start()

new SignalGenerator

SignalGenerator::Pause()

SignalGenerator::Stop()

SignalGenerator finished

SignalGenerator::

DestroyOnTarget

SignalGenerator::getElapsedTime

SignalGenerator::getRemainTime

SignalGenerator::

DestroyOnTarget

SignalGenerator::Start()

SignalGenerator::Start()

 

Figure 63 Signal generator state diagram 

eIN_CONFIGURATION 

After creation, a SignalGenerator object is in state eIN_CONFIGURATION. In this 
state, the signal generation is defined / configured. Usually, it is loaded to the HIL 
simulator target, when configuration has been done.  

eREADY 

After loading a defined signal description set to the HIL Simulator target, the 
SignalGenerator object is in state eREADY. In this state, it waits for being started. 

eRUNNING 

After starting the signal generation, the SignalGenerator object is in state eRUNNING. In 
this state, the model variables are stimulated by the actual signals as defined. 
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eFINISHED 

If signal generation is finished, this state is entered. 

ePAUSED 

Signal generation can be paused. In this case, state ePAUSED is entered. Leaving this 
state the signal generation resumes, and does not start at beginning. 

eSTOPPED 

If the signal generation is stopped, this state is entered. 
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5.2 USAGE OF THIS PORT 

In this chapter, the usage of this port is described by means of some examples. It is 
shown how to read and write model variables and how to set up a signal generator or a 
capture. How to use captures is shown in Chapter 4.9. 

5.2.1 READING & WRITING MODEL VARIABLES 

The sequence diagram in Figure 64 depicts how to handle and how to access model 
variables: First, an instance of the model access port is created. When such an instance 
has been created, it is assumed that the HIL simulator has been initialized and a 
simulation model is running. The instance of the MAPort is used to request all available 
model variables and all tasks (timing raster) existing in the simulation. A Capture object 
is created by the MAPort instance with a raster specified by one of the existing tasks. 
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HIL User

:MAPort

:Capture

MAPort()

getVariableNames() : A_UNICODE2STRING[]

getTaskNames() : A_UNICODE2STRING[]

Load (reader)

CreateSignalGenerator() : SignalGenerator

IsReadable (variableName) : A_BOOLEAN

GetDataType (variableName) : DataType

Read (variableName) : BaseValue

CreateCapture (task) : Capture

:Signal
Generator

SignalGeneratorSTIReader (fileName)

IsWritable (variableName) : A_BOOLEAN

Write (variableName, value)

get all avaiable 
signals and 
tasks

create capture 
object
look to capture file 
for more detailed 
operation 
examples

create signal 
generator object

change the value of a 
variable and verify it

check signals

Read (variableName) : BaseValue

:Signal
Generator
STIReader

:BaseValue

 

Figure 64 Model AccessPort example 

In order to stimulate model variables by signals, a SignalGenerator instance is 
required that is also constructed by the MAPort object. Existing signal descriptions can 
be loaded (see Chapter 5.2.2 for details). The usage of the Capture and the 
SignalGenerator instances is described in Chapters 4.9 and 5.2.2. 

Before accessing a model variable, the MAPort instance can check if the variable is 
readable or writeable (or both) and of which data type it is. Finally the variable is accessed 
by the Read() and the Write() method of the MAPort object. 
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The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\MAPort\MAPortSample.cs 
Python Python\SampleCode\MAPort\MAPortExample.py 
Java JAVA\SampleCode\MAPort\MAPortExample.java 

5.2.2 STIMULATING MODEL VARIABLES 

How to stimulate model variables by signals is depicted in Figure 65 and Figure 66. As 
described in the previous chapter, instances of class MAPort and of class 
SignalGenerator need to be created beforehand. Using a 
SignalGeneratorSTIReader object, existing signals are loaded as described in 
Chapter 4.6. An example for such signals is presented in Chapter 4.7. 
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Figure 65 SignalGenerator example (part 1) 

C%23/ASAM.HILAPI/SampleCode/MAPort/MAPortSample.cs
Python/SampleCode/MAPort/MAPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/MAPort/MAPortExample.java
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After executing the Load() method, signal descriptions are referenced by the 
SignalGenerator via a SignalDescriptionSet object. It may be that the file 
contains already information that assigns the signals to model variables. In this case the 
signal generator is configured after loading. Otherwise, these assignments are specified 
by adding name-item pairs to the Assignments-Collection of the SignalGenerator 
object. The name is one of the signal names, the item is the model path of the variable to 
be stimulated. 
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Figure 66 SignalGenerator example (part 2) 
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After setting these assignments, the stimulus is configured. The next step is to load the 
stimulus down to the target which is usually the HIL simulator. Then, the stimulus can be 
started, paused, and stopped by calling the corresponding methods. Further, the user can 
ask for the current state of the signal generator using the getState() method. Finally, 
the signal generator object can be saved including the new assignments, using a 
SignalGeneratorSTIWriter as described in Chapter 4.6. 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\MAPort\SignalGeneratorSample.cs 
Python Python/SampleCode/MAPort/StimulusExample.py 
Java JAVA/SampleCode/MAPort/SignalGeneratorExample.java 

 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/MAPort/SignalGeneratorSample.cs
Technology_Reference_Interfaces/Python/SampleCode/MAPort/StimulusExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/MAPort/SignalGeneratorExample.java
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6 DIAGNOSTIC PORT 

6.1 USER CONCEPT 

6.1.1 GENERAL 

The Diagnostic Port facilitates the integration of diagnostic tools within the hardware-in-
the-loop test automation setup. A diagnostic tool may consist of hardware, software or 
both that allow for ECU diagnostics. Figure 67 outlines the interaction of the participating 
components. The test automation system acts as a client of the Diagnostic Port API. 

deployment ComponentInteraction

ECU

«device»

Diagnostic Tool

«execution environment»

Test Automation Tool

 

Figure 67 Component Interaction 

The Diagnostic Port enables not only the integration of diagnostic tools within the test 
automation system but also the unification and standardization of the diagnostic tools‟ 
functional interface by defining a standardized API. By implementing the standardized 
Diagnostic Port API, diagnostic tool providers make sure that the diagnostic tools are 
interchangeable.  
The Diagnostic Port API is not a replacement or an extension of existing diagnostic 
standards or diagnostic protocol standards. Rather the Diagnostic Port API forms a 
programming interface that reflects the client‟s requirements related to a diagnostic tool in 
the context of hardware-in-the-loop test automation. As a general rule, existing standards 
for diagnostics may be applied underneath the Diagnostic Port or rather by the diagnostic 
tool providers. 
Underneath the Diagnostic Port there is the diagnostic tool and one or more ECUs that 
may be connected to form a network. 

6.1.1.1 COMMUNICATION MODES 

The Diagnostic Port communicates directly with the diagnostic tool and indirectly with one 
or more ECUs. The client has to consider that there is hardware underneath the 
diagnostic tool that - depending upon the state of development of the hardware - is more 
or less robust and reliable. That is why the client may anticipate hardware and 
communication failures underneath the diagnostic tool. The system and communication 
failures that are detected by the diagnostic tool are delivered to the Diagnostic Port‟s client 
by exceptions. 
The Diagnostic Port API allows for setting the communication mode between the 
diagnostic tool and the ECU. The communication mode is either automatic or explicit. In 
automatic communication mode the client does not need to call the methods for starting 
and stopping the communication with the ECU explicitly as this is handled by the 
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diagnostic tool. In explicit communication mode however, the client has to call the 
methods for starting and stopping the communication explicitly. In automatic 
communication mode the diagnostic tool has to check whether the communication with 
the ECU has already been started whenever a client calls an method of the ECU class, 
the FunctionalGroup class or one of the BaseController classes. If the communication has 
not been already started, the diagnostic tool has to start and stop the communication on 
its own responsibility so that the communication status is preserved regardless of the 
invoked method. The automatic communication mode is the default communication mode. 
Chapter 6.2.11 shows how to send a HEX service with explicit communication. 

6.1.1.2 MACROS 

The Diagnostic Port API supports the execution of macros. Macros are a convenient way 
to group and execute a bunch of diagnostic commands. Chapter 6.1.2.2 shows the 
classes that are provided for macro commands by the Diagnostic Port API. Additionally, 
chapter 6.2.3 demonstrates how to execute macro commands with the Diagnostic Port 
API. 

6.1.1.3 FUNCTIONAL GROUPS 

A functional group is a group of ECUs that have equal or similar functionality. Mostly, 
these ECUs can be addressed by a functional address, i.e. a symbolic name for the 
functional group. For example, all door controlling ECUs of a vehicle may form a 
functional group. Chapter 6.1.2.3 shows the classes that are provided for functional 
groups by the Diagnostic Port API. 

6.1.1.4 SUPPORTED USE CASES 

The Diagnostic Port API provides functions for the following use cases: 

Diagnostic Tool 

 Configuring the diagnostic tool 

 Setting the communication mode 

ECU  

 Starting and stopping the communication explicitly 

 Reading and clearing the fault memory 

 Reading identification data 

 Reading measurement data by short names 

 Reading and writing variant coding data 

 Reading and writing data from and to the EEPROM by address 

 Reading and writing data from and to the EEPROM by alias names 

 Executing diagnostic jobs 

 Executing diagnostic job macros 

 Sending hex services 

Functional Group 

 Starting and stopping the communication explicitly  

 Reading and clearing the fault memory  

 Reading measurement data by short names  

 Sending hex services 
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6.1.2 API 

The Diagnostic Port API consists of several classes that represent logical components 
used in the diagnostic use cases–such as the diagnostic tool, the ECU, the fault memory 
etc.–in an abstract manner. The following chapters describe the classes of the Diagnostic 
Port API and the relations between them. Furthermore the context and the usage of these 
classes is illustrated. 

6.1.2.1 ECU 

class ECU

Port::Port

DiagPort::DiagPort DiagPort::ECU

DiagPort::ECUFaultMemory

DiagPort::ECUBaseControlle r

 

Figure 68 ECU classes 

The main classes of the Diagnostic Port API are outlined in the class diagram in Figure 
68. The DiagPort class is a subclass of the generic Port class. A DiagPort object 
can be used to obtain an ECU object that is a representative of a real ECU. Therefore the 
ECU object contains methods for high level use cases such as executing diagnostic jobs 
and macros, reading variant data or the fault memory for example. The ECU object can 
also be used to receive an ECUBaseController object for more sophisticated tasks 
such as sending HEX services or reading from the EEPROM.  
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6.1.2.2 MACROS 

class MacroHierarc...

Macro::Command

{abstract }

Macro::LoopCommand

Macro::Macro Macro::Operation

{abstract }

Macro::Serv iceCall

Macro::WaitCommand

 

Figure 69 Class hierarchy of the macro classes 

The Diagnostic Port API provides classes for the execution of service calls using macro 
commands. Macros are compositions of diagnostic service calls. Additional commands 
allow for using loop commands and wait commands within macro definitions. Figure 69 
depicts the associations between the macro classes. A Macro object contains a list of 
methods. An method is either a service call, a loop command or a wait command. A loop 
is a kind of macro since it also aggregates several methods. 



Diagnostic Port 

 

 

100 ASAM AE HIL Application Programming Interface for ECU Testing via 
Hardware-in-the-Loop Simulation Version 1.0.0 

 

6.1.2.3 FUNCTIONAL GROUPS 

class FunctionalGroup

Port::Port

DiagPort::DiagPort DiagPort::

FunctionalGroup

DiagPort::

FunctionalGroupBaseControlle r

DiagPort::

FunctionalGroupFaultMemory

 

Figure 70 Functional group classes 

As illustrated in chapter 6.1.1.3 ECUs may be logically grouped to form functional groups. 
The Diagnostic Port API contains several classes in order to meet the demands for 
functional groups. See Figure 70 for an overview of the functional group classes. A 
DiagPort object can be used to obtain a FunctionalGroup object that is a 
representative of a functional group of real ECUs. The FunctionalGroup object 
contains methods for high level use cases such as reading measurement data or the fault 
memory for example. In order to read or clear the fault memory a 
FunctionalGroupFaultMemory object is used. The FunctionalGroup object 
can also be used to receive a FunctionalGroupBaseController object for more 
sophisticated tasks such as sending HEX services. 
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6.2 USAGE OF THIS PORT 

This chapter depicts the usage of the Diagnostic Port API.  The example use cases are 
based on popular tasks in the context of hardware-in-the-loop test automation. 

6.2.1 GETTING THE ECU OBJECT  

HIL User

:DiagPort

:ECU

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName) : ECU

 

Figure 71 Getting the ECU object 

In the following chapters it is assumed that the client has a valid DiagPort instance. 
See the documentation of your HiL-API implementation provider how to obtain this 
instance. Before getting the ECU object the client needs to configure the DiagPort 
instance. This is done by invoking the Configure() method of the DiagPort object. 
The Configure() method takes two parameters: one for the project and one for the 
vehicle information table. The diagnostic tool has to know how to deal with the given 
parameters in order to access ECUs. Then the ECU object can be obtained by invoking 
the GetECU() method of the DiagPort object with parameters for the ECU‟s ID and 
the name of the logical link the ECU is connected to. The sequence diagram in Figure 71 
depicts the steps needed to obtain the ECU object. 
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6.2.2 READING AND CLEARING THE FAULT MEMORY 

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

GetECUFaultMemory() : ECUFaultMemory

:ECU
FaultMemory

Read() : DiagTroubleCodeNamedCollection

Clear()

create new DiagPort
remark:
communication mode is 
eAUTOMATIC by default

configure this Port with 
project data and vehicle 
info table

create an ECU object 
with ecuID and the name 
of LogicalLink

create a fault memory 
object

reads the fault memory 
from the given ECU and 
store it into the 
myFaultmemory object

clears the fault code 
memory inside the ECU

 

Figure 72 Reading and clearing the fault memory 

When the client holds a reference to an ECU object (see chapter 6.2.1), reading the fault 
memory of the ECU is performed in several steps. The client invokes the 
GetEcuFaultMemory() method of the ECU object and gets an ECUFaultMemory 
object as return value. The ECUFaultMemory object is used to receive a dictionary of 
diagnostic trouble codes. In order to receive this dictionary the client of the diagnostic port 
has to invoke the ECUFaultMemory object‟s Read() method. The 
DiagTroubleCodeNamedCollection object that is returned provides methods for 
getting diagnostic trouble codes by DTC value or listing all available trouble code entries. 
See the API documentation of the DiagTroubleCodeNamedCollection class for a 
full overview of available methods. Figure 72 depicts the steps needed to read a 
diagnostic trouble code by DTC value. The last step clears the fault memory by invoking 
the Clear() method of the ECUFaultMemory object. The DiagTroubleCode 
object contains getters for short name, long name, description and value of the DTC entry. 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs 
Python Python\SampleCode\DiagPort\DiagPortExample.py  
Java JAVA\SampleCode\DiagPort\DiagPortExample.java 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java
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6.2.3 READING THE VARIANT CODING DATA 

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

GetVariantData() : A_BYTEFIELD

create new DiagPort
remark:
communication mode is 
eAUTOMATIC by default

configure this Port with 
project data and vehicle 
info table

create an ECU object 
with ecuID and the name 
of LogicalLink

reads the variant data 
from the given ECU

 

Figure 73 Reading the variant coding data 

Variant Coding is used to adapt the ECU‟s software to operating conditions. Typically, this 
is performed during the production of the vehicle. For example toggling between left-hand 
drive and right-hand drive according to the sales country is performed during variant 
coding. Figure 73 illustrates the steps needed to read the variant coding of an ECU. After 
having received the ECU object from the DiagPort object (see chapter 6.2.1) the 
GetVariantData() method is invoked to read the variant coding data. 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs 
Python Python\SampleCode\DiagPort\DiagPortExample.py  
Java JAVA\SampleCode\DiagPort\DiagPortExample.java 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java
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6.2.4 READING IDENTIFICATION DATA 

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

GetIdentificationData() : StringNamedCollection

create new DiagPort
remark:
communication mode is 
eAUTOMATIC by default

configure this Port with 
project data and vehicle 
info table

create an ECU object 
with ecuID and the name 
of LogicalLink

reads the identification 
data from the given ECU

 

Figure 74 Reading identification data 

Identification data is used to identify a given ECU. Identification data may comprise the 
vehicle manufacturer‟s part number, hardware part number, hardware version, software 
version etc. The Diagnostic Port API client can read identification data by means of the 
ECU object‟s GetIdentificationData() method. See chapter 6.2.1 how to receive 
an ECU object. The result of an invocation of the GetIdentificationData() 
method is an StringNamedCollection object. This is an ordinary dictionary or map 
data type that holds key value pairs. These data types provide functions to access the 
contained data. For example GetByName() is an accessor method that takes the name 
of an (existing) key and returns the corresponding value. 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs 
Python Python\SampleCode\DiagPort\DiagPortExample.py  
Java JAVA\SampleCode\DiagPort\DiagPortExample.java 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java
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6.2.5 READING MEASUREMENT DATA 

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

GetMeasureData (signals) : BaseValueNamedCollection

create new DiagPort
remark:
communication mode is 
eAUTOMATIC by default

configure this Port with 
project data and vehicle 
info table

create an ECU object 
with ecuID and the name 
of LogicalLink

reads the measured data 
from the given ECU

 

Figure 75 Reading measurement data 

The Diagnostic Port API also allows reading measured values. The respective method is 
located in the ECU class. In order to read a bunch of measured values the client has to 
invoke the ECU class‟s GetMeasureData() method. This method takes an array of 
measure value names and returns a BaseValueNamedCollection object that 
contains the measured values. 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs 
Python Python\SampleCode\DiagPort\DiagPortExample.py  
Java JAVA\SampleCode\DiagPort\DiagPortExample.java 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java
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6.2.6 EXECUTING MACROS 
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Figure 76 Executing macros 
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The Diagnostic Port also allows for the execution of macro commands. Macro commands 
are compositions of service calls, wait commands and loop commands. Figure 76 outlines 
the execution of a macro that executes a service calls, a wait command and a loop of 
service calls. Before being able to call the ExecuteMacro() method of the ECU class 
the client has to receive an ECU object from the Diagnostic Port. See chapter 6.2.1 how to 
receive an ECU object. Also the client has to build the macro by creating the appropriate 
objects for service calls, wait commands and loop commands. Therefore the 
corresponding classes have to provide constructors to create instance objects. Then, the 
macro is constructed by adding these objects to macro or loop objects with the Add() 
method as depicted in Figure 76. The ExecuteMacro() method has to validate the 
given macro object structure. The ExecuteMacro() method will throw an exception if 
the given macro is not valid. 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs 
Python Python\SampleCode\DiagPort\DiagPortExample.py  
Java JAVA\SampleCode\DiagPort\DiagPortExample.java 
  
 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java
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6.2.7 READING AND WRITING VALUES FROM AND TO THE EEPROM BY ALIAS NAMES 

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

WriteValueByName (alias, value)

ReadValueByName (alias) : A_BYTEFIELD

create new DiagPort
remark:
communication mode is 
eAUTOMATIC by default

configure this Port with 
project data and vehicle 
info table

create an ECU object 
with ecuID and the name 
of LogicalLink

writes data via an alias 
name into the RAM

verifies the data

 

Figure 77 Reading and writing values from and to the EEPROM by an alias name 

The client of the Diagnostic Port API can read and write data from and to the ECU‟s 
EEPROM by using symbolic (alias) names for the EEPROM address. The diagnostic tool 
is responsible for resolving the symbolic name to a specific address value. The 
corresponding methods are located in the ECU class of the Diagnostic Port API. The 
method for writing is named WriteValueByName() and the method for reading is 
named ReadValueByName(). Both methods take an alias name for the address as 
parameter. The diagnostic tool has to know how to map this alias name to a regular 
EEPROM address. Figure 77 depicts the steps needed to read and write from and to the 
ECU‟s EEPROM by an alias name. 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs 
Python Python\SampleCode\DiagPort\DiagPortExample.py  
Java JAVA\SampleCode\DiagPort\DiagPortExample.java 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java
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6.2.8 READING FROM THE EEPROM 

HIL User

:ECU
:ECUBase
Controller

ReadFromAddress (address, numberOfBytes) : A_UINT64

GetECUbaseController() : ECUBaseController

 

Figure 78 Reading from the EEPROM 

Reading data from an address in the EEPROM of the ECU is performed by using the 
ECUBaseController. A ECUBaseController object can be received from the ECU 
object by invoking its GetECUBaseController() method. See chapter 6.2.1 how to 
obtain an ECU object. With the ECUBaseController‟s ReadFromAddress() method 
the client can read a bunch of bytes from the ECU‟s EEPROM. The 
ReadFromAddress() takes two parameters: one for the address in the EEPROM and 
one for the number of bytes to read. 

6.2.9 WRITING TO THE EEPROM 

HIL User

:ECU

:ECUBase
Controller

WriteToAddress (address, data)

GetECUbaseController() : ECUBaseController

 

Figure 79 Writing to the EEPROM 

Writing data to an address in the EEPROM is performed by using the ECUBaseController. 
A client receives an ECUBaseController object by invoking the ECU object‟s 
GetECUBaseController() method. See chapter 6.2.1 how to obtain an ECU object. 
The ECUBaseController‟s WriteToAddress() method writes the data specified with 
the data parameter to the EEPROM at the address specified with the address parameter. 
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6.2.10 IMPLICIT AND EXPLICIT COMMUNICATION 

The chapters above did all use the automatic (implicit) communication mode. In this case 
the client of the Diagnostic Port must not take care of creating and destroying 
communication channels in order to communicate with the ECU. In automatic 
communication mode it‟s up to the diagnostic tool–i.e. the HiL API Diagnostic Port server–
to handle this task. The automatic communication mode is the default communication 
mode. 
But there may also be use cases when a more sophisticated control over the 
communication is needed. That is why there is the explicit communication mode which is 
explained in the following chapter. In explicit communication mode the client is 
responsible for starting the communication with the StartCommunication() method 
before methods that need to communicate with the ECU can be invoked, e.g. 
SendHexService(). Also the client is responsible for stopping the communication with 
the StopCommunication() method after the mentioned method has been called. 

6.2.11 SENDING HEX SERVICES WITH EXPLICIT COMMUNICATION 

HIL User

:DiagPort

:ECU

Configure (project, vehicleInfoTable)

setCommunicationMode (eEXPLICIT)

GetECU (ecuId, logicalLinkName) : ECU

SendhexService (serviceId, pdu) : A_UINT64[]

:ECUBase
Controller

GetECUBaseController() : ECUBaseController

StartCommunication()

StopCommunication()

 

Figure 80 Sending HEX service with explicit communication 

This chapter illustrates the usage of the explicit communication mode. In explicit 
communication mode the client has to start and stop the communication with the ECU 
explicitly. After the project is configured the client receives the ECU object by invoking the 
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GetECU() method. Then the communication mode is set to explicit communication 
mode (eEXPLICIT) with the ECU class‟s SetCommunicationMode() method. 
Before calling an method that communicates with the ECU–e.g. the 
SendHexService() method–the StartCommunication() method of the ECU 
class has to be called. Finally the StopCommunication() method has to be called in 
order to stop the communication with the ECU. Figure 80 shows the steps needed to send 
an HEX service with explicit communication. 
Since the Diagnostic Port only defines the two mentioned communication modes as state 
that can be changed via the SetCommunicationMode() method no state diagrams 
are provided here. 

6.2.12 EXECUTING JOBS 

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

ExecuteJob (jobName, parameter) : AnyObjectNamedCollection

IntVectorValue (value) :AnyObject
NamedCollection

create new DiagPort
remark:
communication mode is 
eAUTOMATIC by default

configure this Port with 
project data and vehicle 
info table

create an ECU object 
with ecuID and the name 
of LogicalLink

execute the job

create 1...n 
parameter for the 
Job

examine the response 
parameter

 

Figure 81 Executing a job 

The Diagnostic Port API provides methods for the execution of diagnostic jobs. Figure 81 
shows the steps needed to execute a diagnostic job. After configuration of the Diagnostic 
Port and receiving of the ECU object, the client creates the job parameters and invokes 
the ExecuteJob() method of the ECU class. 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs 
Python Python\SampleCode\DiagPort\DiagPortExample.py  
Java JAVA\SampleCode\DiagPort\DiagPortExample.java 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java
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6.2.13 READING MEASUREMENT DATA FROM A FUNCTIONAL GROUP 

HIL User

:DiagPort

:Functional
Group

DiagPort()

Configure (project, vehicleInfoTable)

GetFunctionalGroup (functionalGroupId, logicalLinkName) : FunctionalGroup

GetMeasureData (signals) : FunctionalGroupDataCollection

create new DiagPort
remark:
communication mode is 
eAUTOMATIC by default

configure this Port with 
project data and vehicle 
info table

create a FunctionalGroup 
object with 
FunctionalGroupID and 
the name of LogicalLink

reads the measured data 
from the given functional 
group

 

Figure 82 Reading measurement data from a functional group 

Since the Diagnostic Port API supports functional groups, the client can read 
measurement data from a functional group, i.e. from a group of ECUs. Figure 82 depicts 
the steps needed to perform this task. After configuration of the DiagPort object and 
receiving of the FunctionalGroup object, the client invokes the Functional Group 
object‟s GetMeasurementData() method with the desired signal names as 
parameter. 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs 
Python Python\SampleCode\DiagPort\DiagPortExample.py  
Java JAVA\SampleCode\DiagPort\DiagPortExample.java 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java
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6.2.14 USING THE BASECONTROLLER 

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

GetECUBaseController() : ECUBaseController

:ECUBase
Controller

WriteToAdress (address, data)

ReadFromAddress (address, numberOfBytes) : A_BYTEFIELD

create new DiagPort
remark:
communication mode is 
eAUTOMATIC by default

configure this Port with 
project data and vehicle 
info table

create an ECU object 
with ecuID and the name 
of LogicalLink

get ECUBaseController

write value to a given 
address

read value from a given 
address

 

Figure 83 Using the BaseController 

The BaseController is used in cases a more sophistic access to the diagnostic tool is 
needed. With the BaseController‟s methods the client is able to read and write values 
directly to addresses of the ECU‟s memory. Figure 83 outlines the steps needed to read 
and write a number of bytes from and to the ECU‟s memory. The client receives the 
BaseController object directly from the ECU object as a return value of the 
GetECUBaseController() method. 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs 
Python Python\SampleCode\DiagPort\DiagPortExample.py  
Java JAVA\SampleCode\DiagPort\DiagPortExample.java 
 

6.3 SPECIAL HINTS 

6.3.1 STRUCTURE OF RETURNED COLLECTIONS 

The structures of the return collections of methods of the Diagnostic Port‟s classes 
depend on the ECU that is connected to the diagnostic tool. Therefore the Diagnostic Port 
API does not specify any return structures. 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java
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6.3.2 STATES IN THE DIAGNOSTIC TOOL 

There are no restrictions on the invocation of methods that affect the communication 
mode or the communication status respectively. 
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7 EES PORT  

7.1 USER CONCEPT 

7.1.1 GENERAL 

7.1.1.1 ELECTRICAL ERROR SIMULATION ON THE HIL SYSTEM 

The pins of the system under test (SUT) are connected to the HIL system that provides 
power supply lines, communication busses like CAN, and simulated sensors and 
actuators. But test cases may not only comprise checking the behavior of the SUT in a 
fully functional environment. It is also important to check the SUT in case of electrical 
errors on the input and output pins. The question is: How does the SUT behave if the 
sensors and actuators are not working correctly or if they are not connected correctly? 

Typical errors that have to be tested are electrical problems, mainly caused by wiring. To 
generate this class of errors the connections between the SUT and its environment 
(sensors, actuators, power supply, busses) have to be disturbed by an appropriate 
hardware system. This is the task of the so-called electrical error simulator (EES, see 
Figure 84). 

HIL Tester

System 
under
Test

Sensor
Simulation
(Stimulation)

Actuator
Simulation
(Measurement)

Control Control

EESEES

Inputs Outputs

 

Figure 84 Electrical Error Simulation is used to disturb the signals between the HIL 
system and the SUT 

The electrical error simulator creates typical wiring errors like loose contacts, broken 
cables, short-circuits to neighboring pins, to ground (chassis) or to battery voltage. EES is 
provided by a special hardware in the HIL tester. But EES has not to be a separate 
component in general. It may be also integrated in a comprehensive HIL hardware. 
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The EES hardware is controlled by the test cases during the test, not by the real-time 
model. The HIL API EES port provides a general API for electrical error simulation 
hardware. The API hides the specific API of the used hardware, its driver software, and 
the communication between the machine the test is running on and the EES hardware. 
The EES port provides a defined set of functionality in an abstract manner. It is designed 
from the test case writer‟s point of view. Thus, the test case writer deals with some 
abstract error functionality. It is not necessary to know the technical details of the EES 
hardware. 

7.1.1.2 FUNCTIONAL PRINCIPLE OF THE EES PORT 

The general functional principle of the EES port is: A sequence of errors is defined using 
the HIL API by the test script. This is called the error configuration and may be stored in 
an XML file. The error configuration is downloaded to the specific EES hardware or 
software. The execution of the error sequence is completely transparent for the EES port 
user. It is done by the vendor-specific hardware, software, or driver. 

Error Configuration

Error

Error

Error

Error Set

Error

Error

Error

Error Set

Error

Error

Error

Error Set

Save error
configuration

Load error
configuration

Download config to EES HW

EES port implementation

EES software/driver

EES hardware

Create configuration
using API commands

Error Configuration
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Figure 85 Error configurations are defined by EES ports and downloaded for 
execution to the vendor-specific EES hardware respective software 
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HIL API EES port mainly deals with the configuration of errors and starting a formerly 
configured error sequence by downloading (see Figure 85). Therefore the HIL API EES 
port is independent from a concrete EES implementation. 

7.1.2 CONFIGURATION AND EXECUTION OF ELECTRICAL ERRORS 

7.1.2.1 ERROR CONFIGURATION 

Error Configuration Config 1

Error 1

Error 3

Error Set A

Error 2

Error 3

Error 4

Error Set B

Error x

Error Set n...

tt
1

Trigger 1

t
2

Trigger 2

t
n

Trigger n  

Figure 86 An error configuration comprises a sequence of error sets with several 
errors 

An error is a defined disturbance of one or two electrical signals, typically pins of the SUT. 
E.g. an error may disturb a signal by interrupting the line and replacing it with a resistor. 
More than one error for different signals may be in effect at the same time. All errors that 
start at the same time are put together in an error set. An EES configuration comprises of 
a sequence of error sets (see Figure 86). 
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7.1.2.2 EXECUTION OF AN ERROR CONFIGURATION 

Error Configuration

Error 1 (Sig1)

Error Set

tt
2

Trigger

Event 1

Error 2 (Sig2)

Error Set

Error 2 (Sig2)

Error 3 (Sig3)

Error Set

Error 4 (Sig1)

Error Set

Error 5 (Sig2)

Signal Sig3

Signal Sig2

Signal Sig1

t
3

Trigger

Event 2

t
4

Trigger

Event 3

t
5

Trigger

Event 4

t
6

Stop()

t
1

 Start()

no error

error 5

no error error 1 no error error 4

no error

no error error 3

error 2 no error

 

Figure 87 Example for the execution of an error configuration 

To execute an error configuration, it has to be downloaded and started by the test case. 
When an error configuration is executed, the error sets are executed in the defined 
sequence (see Figure 87). That means the first error set is activated when the trigger for 
the first error set becomes true. All other triggers are not considered so far. The errors in 
the error set stay active as far as the trigger of the next error set becomes true. 
The sequence of error sets is statically defined by the error configuration. It does not 
depend on the sequence the triggers of the error sets are fired. The triggers only 
determine when the next error set replaces the currently active error set. 
The error configuration has to be stopped by the test case using the HIL API. The last 
error set remains active as long as the error configuration is not stopped. To get a defined 
end of signal disturbance, an empty error set can be used as the last error set in the 
configuration. Empty error sets can also be used to create error-free phases (refer to 
Figure 87 for an example). 

If an error is defined in the same way in two consecutive error sets, the error will stay in 
action. There is no restart of the error or any other kind of influence when one error set is 
replaced by the consecutive error set containing the same error for the same signal. 

7.1.2.3 DOWNLOAD OF AN ERROR CONFIGURATION 

The EES error configuration has to be downloaded before it can be executed. Download 
means that the configuration has to be completely passed by the EES port to the specific 
EES driver, software, and hardware system. Typically the configuration will be physically 
downloaded to the hardware and executed there. But in general, this is not required by the 
HIL API definition. It is also possible that an error configuration is executed by the driver or 
another software system on the same PC. 
Therefore, the conceptual sequence to create and use an error configuration is: 
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1. An error configuration is created by means of the HIL API EES port (construction by 
API calls or loading from a file). 

2. Now the error configuration is stored on the computer the HIL API is running on and 
may be changed. 

3. Then the error configuration is downloaded to the EES system, a specific 
software/hardware system. In any case, the error configuration cannot be changed 
any longer. 

4. After starting the error configuration in the test case (using HIL API), the defined 
sequence of errors is executed. Execution is independent from the test case and the 
HIL API. 

5. When the HIL API stops the execution, all kinds of disturbance immediately stop. 
Possibly the last error set of the error configuration remains active until the execution 
is stopped. 

A downloaded error configuration can be used several times. 

7.1.3 TRIGGERS IN EES 

The EES system uses trigger events to switch from one error set to another error set. 
These triggers are handled by the EES hardware and software. They are not defined by 
the HIL API. And there are also no means to define trigger conditions for EES error sets in 
the EES port. In an EES error configuration only the type of the awaited trigger is defined. 
The type of a trigger can be thought as the trigger input connection of an appropriate 
hardware. But in fact, the trigger may be controlled by software also. 
From EES port‟s point of view an EES system has three possible trigger inputs: 

 Manual trigger: This trigger is fired by the controlling test script. The EES port 
offers a method to fire this trigger. 

 Hardware trigger: The hardware trigger reacts on some kind of electrical trigger 
line of the EES hardware. Further details are not defined by the HIL API. It is 
just expected that the EES hardware has some kind of a hardware trigger input. 

 Software trigger: The software trigger reacts on a trigger signal defined in the 
model or another software part of the HIL system. It is not defined by HIL API or 
the EES error configuration how the EES system is associated with the software 
system. 

If an additional configuration of triggers is needed by the EES system, this has to be done 
using the EES specific software interface. There are no means in HIL API so far to define 
additional options for the triggers. 

7.1.4 ELECTRICAL ERRORS 

An error is defined by several independent aspects: the error category, the error type, and 
the option to disturb with or without load. 
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7.1.4.1 ERROR CATEGORY 

Pin_2_Pin

Interrupt

Short-Circuit Ground

Short-Circuit UBatt

Short-Circuit Potential

HIL SUTEES

disturbance by

short-circuit

Signal 1

Signal 2

Signal
disturbance by

interruption

disturbance by

short-circuit

Signal

to ground

disturbance by

short-circuit

to U
Battery

Signal

disturbance by

short-circuit

to potential X

Signal  

Figure 88 Illustration of the error categories defined by EES port 

The error category defines how a signal should be disturbed. A signal is interrupted or 
connected to another signal or potential (see Figure 88). The way the interruption or short-
circuit is provided is not defined by the error category (but by the error type, see chapter 
7.1.4.2). 
Typically the error category affects one signal. Only in case of a pin to pin error two 
signals are affected. 

The error short-circuit to potential is the generalized form of a short-circuit error. For this 
category of errors the EES hardware has to provide additional potentials beside Ubattery 
and ground. Multiple potentials identified by numbers may be supported. Ubattery and 
ground are covered by separate categories because of their importance. 
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7.1.4.2 ERROR TYPE 

Simple

Resistor

Dynamic

Loose Contact

Dynamic Resistor

Loose Contact Resistor

Short-Circuit Interruption

R

R

statically open

R

R

statically closed

R

R

statically open
statically closed

duration
duration

duration
duration

duration
PWM (dc, f)

duration
PWM (dc, f) duration

PWM (dc, f)

duration
PWM (dc, f)

 

Figure 89 Illustration of the error types defined by EES port 

The error type defines the disturbance itself. There are several possibilities that differ in 
the dynamic of the disturbance (static, for a defined duration, controlled by a PWM signal) 
and the resistance in case of the error (defined resistance or completely open/closed). 
The concrete circuit also differs between short-circuit errors and interrupt errors, because 
in one case the error is caused by closing a connection, in the other by opening the 
connection. Nevertheless, the idea of an error of the same error type is the same in both 
cases. 

Figure 89 shows the available error types and the principal circuits used for short-circuits 
and interrupts. 
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7.1.4.3 WITH OR WITHOUT LOAD 

With Load

Without Load

HIL SUTEES

Signal
open in case of

disturbance to

protect HIL
disturbance

Signal
no protection

even  in case of

disturbance
disturbance

 

Figure 90 Illustration of the option with load and without load 

The option “with load” or “without load” is an additional aspect of an error. This aspect is 
orthogonal to error category and error type and can be freely chosen for almost every kind 
of error. Only interruptions do not provide this option because technically it does not make 
any sense in this case. 
Background: If a signal between the HIL and the SUT is disturbed by the EES hardware, 
not only the SUT has to deal with the disturbance. A short-circuit for example effects the 
HIL hardware, too. To protect the HIL hardware the EES can open the connection 
between HIL and EES. Thus, the disturbance has an effect on the SUT but cannot 
damage the HIL. 

Figure 90 shows the principal circuit of the with/without load protection in the EES 
hardware. 

7.1.5 API 

The EES port API consists of several classes to control the EES system and to create, 
store, load, and represent error configurations. In the following chapters the most 
important classes of the EES port and the relations between them are described. 
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7.1.5.1 EES PORT 

class _doc_main_EESPort

Port::Port

EESPort

ErrorConfiguration

0..1

0..1

 

Figure 91 The main EES port classes 

The EES port itself is represented by the class EESPort. This class is derived from the 
general HIL API Port class. EESPort provides methods to download an error 
configuration, to start and stop the execution of a downloaded error configuration on the 
EES system, and to trigger the EES system manually. This is the way a trigger of type 
“MANUAL” is fired. 
To synchronize the test run of the test script with the execution of the error configuration, 
the synchronous method WaitForTrigger can be used. This method waits until the 
next trigger event defined in the error configuration. Alternatively the method returns with 
an error when the timeout time is reached. 

An error configuration can be created using the constructor of the class 
ErrorConfiguration. It is possible to create several error configurations. But only 
one error configuration can be assigned to the EESPort instance. The assignment 
overrides an older assignment. Assigned error configurations can be changed. But after 
downloading the error configuration to the EES system no further changes are 
considered. Nevertheless, the error configuration may be downloaded again. 
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7.1.5.2 ERROR CONFIGURATION 

class _doc_ErrorConfiguration

ErrorConfiguration

ErrorSe t

ErrorObjects::SimpleError

ErrorObjects::ResistorError

ErrorObjects::DynamicError

ErrorObjects::DynamicResistorError

ErrorObjects::LooseContactError

ErrorObjects::LooseContactResistorError

1

0..*

contains

0..*

0..*

0..*

0..*

0..*

0..*

 

Figure 92 Classes used to represent an error configuration 

According to the structure of an error configuration there exists one class for the error 
configuration itself (ErrorConfiguration), one for the error sets (ErrorSet), and 
several classes for errors of the different error types (SimpleError, …). 
Only the error configuration class can be instantiated by the constructor. All other classes 
are constructed using the factory method respective the error factory class of the error 
configuration object. Therefore error sets and error objects exist only in the context of an 
error configuration and will be destroyed automatically when the error configuration is 
destroyed by the user (using the destructor of ErrorConfiguration). 
Errors (SimpleError, …) are created using the factory provided by the error 
configuration instance and then assigned to one or more error sets. It is not allowed to 
assign an error to another error configuration. 

Properties of error objects and error sets (like name) cannot be changed after creation. 
These properties are set at creation by the factory class. In this sense, these objects are 
read-only. 
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7.1.5.3 ERROR OBJECTS 

class _doc_ErrorObje...

BaseError

{abstract }

SimpleError DynamicError

ResistorError LooseContactError DynamicResistorError

LooseContactResistorError

 

Figure 93 Class hierarchy of error objects 

The six error classes represent the six error types. Other differentiation characteristics of 
errors like error category and option with/without load are stored as attributes in these 
classes. 

The error classes are hierarchically organized with a common base class. The base class 
BaseError is abstract and cannot be instantiated. Attributes and variables of this type 
store an instance of an arbitrary error. 
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7.1.5.4 CREATION OF ERROR OBJECTS 

class Creation of Errors

EESPort::ErrorConfiguration EESPort::ErrorFactory

ErrorFactory::SpecificErrorFactory

ErrorBuilder::BaseErrorBuilder

ErrorBuilder::SimpleErrorBuilder ErrorBuilder::DynamicErrorBuilderErrorBuilder::ResistorErrorBuilder

providesprovides

provides

provides

 

Figure 94 Classes used to create error objects 

Factory and builder classes are used to create a specific error object. The result of the 
builder is an instance of one error class (see chapter 7.1.5.3). 
In principle, error objects are created by the following sequence: 

1. Fetch factory ErrorFactory from error configuration. Use the error configuration 
the new error should belong to. 

2. Choose the error category and define the affected signal or signals. For each signal 
the option with or without load is defined, too. The ErrorFactory will return a 
SpecificErrorFactory. 

3. Choose whether you want to create a simple or a dynamic error. This is one aspect of 
the error type. The SpecificErrorFactory will return an object of class 
SimpleErrorBuilder or class DynamicErrorBuilder. 

4. Configure now the error type using the error builder object. Possibly the error builder 
returns another error builder so that the building process may comprise several levels. 

5. The method ToBaseError() returns the configured error object. 
ToBaseError() is available in all error builder classes. 

Factories and builder objects cannot be created or destroyed by the user. They must be 
fetched again from the according father object each time a new error should be created. 
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This multi-level structure of factory/builder objects is designed to be used in a one line 
statement to create an error object with all its characteristics. The example code 
demonstrates how this works in the supported programming languages. 

7.1.5.5 READER AND WRITER FOR EES CONFIGURATION FILES 

class _doc_DocumentHandling EESPort

EESConfigurationReader

{abstract }

EESConfigurationFileReade r EESConfigurationFileW riter

EESConfigurationWriter

{abstract }

DocumentHandling::DocumentManager

{abstract }

 

Figure 95 Reader and writer classes for error configuration files 

Error configurations can be externally stored, normally in files. To allow different storage 
types and formats, reading and writing is handled by abstract reader and writer classes. 
For the EES error configuration these are the abstract classes 
EESConfigurationReader and EESConfigurationWriter. Both classes are 
derived from the common HIL API document handler class DocumentManager. 

HIL API supports an XML format to store complete error configuration in a file. The 
schema definition of this XML file is part of the HIL API standard (EESConfiguration.xsd). 
The specific reader and writer classes are EESConfigurationFileReader and 
EESConfigurationFileWriter. 
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7.1.6 EES PORT STATES 

stm EES StateDiagram

eCONFIGURED

eACTIVATED eSTARTED

EESPort::setConfiguration()

EESPort::GetActiveErrorSet()

EESPort::Download()

EESPort::EESPort()

EESPort::Start()

Configuration::Clear

start trigger becomes true

EESPort::WaitForTrigger()

EESPort::GetActivatedErrorSet

EESPort::Trigger()

EESPort::Stop()

EESPort:.Trigger()

EESPort::WaitForTrigger()

EESPort::GetActivatedErrorSet()

EESPort::Stop()

 

Figure 96 State diagram for EES port 

The EES port has three states: 

 eCONFIGURED:  
The base state of the EES port. In this state it is possible to configure the 
port and assign an error configuration. 

 eACTIVATED:  
An error configuration is downloaded to the EES system and started. The 
EES system waits for the first defined trigger event to execute the first error 
set in the error configuration. This may be also a manual trigger, fired by 
using the method Trigger of the EES port object. 

 eSTARTED:  
An error set is active. The EES system waits for the next defined trigger 
event to switch to the next error set. 
 

The execution of an error configuration is divided into two states because the sequence of 
error sets does not start before the first trigger fires. From the user‟s point of view there is 
no difference between those two states. He can fire manual triggers, stop the execution of 
the error configuration, wait for the next trigger to synchronize the execution of the test 
script, or query the currently active error set. 

Configuration of the EES port is not possible, not necessary, and not reasonable during 
execution of an error configuration. Therefore configuration is only possible in the 
configured state. 
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7.2 USAGE OF THIS PORT 

7.2.1 CREATING ERROR CONFIGURATIONS BY API 

HIL User

:EESPort

:Error
Configuration

EESPort()

ErrorConfiguration()

GetErrorFactory() : ErrorFactory

:Error
Factory

create an EESPort

1) build an error for short 
circuit to battery voltage 
with an in-line resistor of 
80 Ohm
see SEQ 01_1_EES

CreateErrorToUbatt (signal, load) : SpecificErrorFactory

CreateErrorToUbatt (signal, load) : SpecificErrorFactory

CreateErrorToPotential (potentialType, signal, load) : SpecificErrorFactory

CreateInterruptError (signal) : SpecificErrorFactory

CreateErrorPin2Pin(signal1, signal2, load1, load2) : SpecificErrorFactory

create an error 
configuration

use a factory to build 
the errors

2) build an error for short 
circuit loose contact to 
battery voltage
see SEQ 01_2_EES

3) build an error for short 
circuit to a selected 
potential
see SEQ 01_3_EES

4) build an error for line 
interruption
see SEQ 01_4_EES

5) build a low resistance 
error between two 
pins/lines
see SEQ 01_5_EES

 

Figure 97 Sequence of example “create error configuration by API” (part1) 
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HIL User
:EESPort

:Error
Configuration

Add (errorSets)

:Error
Factory

Add (error)

myErrorSet_1
:ErrorSet

CreateErrorSet (name, triggerType) : ErrorSet

myErrorSet_2
:ErrorSet

CreateErrorSet (name, triggerType) : ErrorSet

Add (error)

setConfiguration (configuration)

Download()

Start()

Trigger()

create an error set and 
add the errors 
“simpleShortCircuitErrorT
oUbatt” (SEQ 01_1) and 
“line interruption” (SEQ 
01_04). The error set 
should be performed by 
an manual trigger

create an error set and 
add the error 
“looseContactErrorShortC
ircuitErrorToUbatt” (SEQ 
01_2). The error set 
should be performed by 
an hardware trigger

add the error set 
“myErrorSet_1” and the 
error set “myErrorSet_2” 
to the EES configuration 

assign the created 
configuration to EESPort

before the configuration 
can be executed on the 
EES system it has to be 
download to the EES 
system

after a download of a 
configuration the EES 
system has to be armed

after the instruction start, 
the configuration can be 
performed only by a 
trigger. The created 
configuration includes 
errors set using a manual 
trigger, therefore the 
trigger command has to 
be performed

Add (error)

Save (writer)save the EES 
configuration to file

WaitForTrigger(timeout)wait for hardware 
trigger

if the EES system is 
not longer required, 
the system shall be set 
into an idle mode. to 
do that, use the 
command stop. 

Stop()

do something

 

Figure 98 Sequence of example “create error configuration by API” (part2) 
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The example shows how an error configuration is created. First a new error configuration 
is created. This is independent from the EES port instance. In a second step, a specific 
error is created using the factory and builder objects of the configuration (see Figure 97 

and also Figure 99 till Figure 103). In the third step, a new error set is requested from the 

error configuration and the error is assigned to this error set. The error configuration is 
assigned to the EES port instance and stored in a file. 

The created error configuration is executed in the lower part of the sequence. This is 
straight forward: the error configuration is assigned to the EES port, it is downloaded, and 
started. Then a manual trigger is fired and the next trigger is awaited (a hardware trigger 
as defined in the second error set). At the end, the execution of the error set is stopped. 

The sample code for this and the following examples will be found at 
 
C# C#/SampleCode/EESPort/EESPortExample.cs 
Python Python/SampleCode/EESPort/EESPortExample.py 
Java JAVA/SampleCode/EESPort/EESPortExample.java 

7.2.2 CREATING ERROR OBJECTS 

The error objects stored in the error configuration are created using the error factory and 
error builder classes. The following five sequence diagrams show how to create the 
different errors. 

HIL User

:Error
Factory

:Simple
Error

Builder

CreateErrorToUbatt 
(signal, load) : SpecificErrorFactory

AsSimple() : SimpleErrorBuilder

:Specific
Error

Factory

build your 
required error 
by use of the 
factory 
“errorFactory”

build an error for 
short circuit to 
battery voltage 
with an in-line 
resistor of 80 Ohm

WithResistor (resistor) : BaseErrorBuilder

:BaseError
Builder

ToBaseError() : BaseError

simpleShortCircuit
ErrorToUbatt
:SimpleError

 

Figure 99 Sequence to create a short-circuit to Ubattery error object 

Technology_Reference_Interfaces/C%23/SampleCode/EESPort/EESPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/EESPort/EESPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/EESPort/EESPortExample.java
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Figure 100 Sequence to create a loose contact error object 
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HIL User

:Error
Factory

:Simple
Error

Builder

CreateErrorToPotential 
(potentialType, signal, load) : SpecificErrorFactory

AsSimple() : SimpleErrorBuilder

:Specific
Error

Factory

build an error for short 
circuit to a selected 
potential “5”

ToBaseError() : BaseError

errorShortCircuit
ErrorToPotential

:SimpleError

 

Figure 101 Sequence to create a short-circuit error object 

HIL User

:Error
Factory

:Simple
Error

Builder

CreateInterruptError(signal) : SpecificErrorFactory

AsSimple() : SimpleErrorBuilder

:Specific
Error

Factory

build an error for 
line interrupt

ToBaseError() : BaseError

lineInterruptionError
:SimpleError

 

Figure 102 Sequence to create a line interruption error object 
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CreateErrorPin2Pin (signal1, signal2, 
load1, load2) : SpecificErrorFactory

HIL User

:Error
Factory

:Simple
Error

Builder

AsSimple() : SimpleErrorBuilder

:Specific
Error

Factory

build a low 
resistance error 
between two 
pins/lines

WithResistor (resistor) : BaseErrorBuilder

:BaseError
Builder

ToBaseError() : BaseError

pinToPinError
:SimpleError

 

Figure 103 Sequence to create a pin-to-pin error object 

These error creation sequences are part of the creation of an error configuration as shown 
in chapter 7.2.1.  

The sample code for this example will be found at 
 
C# C#/SampleCode/EESPort/EESPortExample.cs 
Python Python/SampleCode/EESPort/EESPortExample.py 
Java JAVA/SampleCode/EESPort/EESPortExample.java 

Technology_Reference_Interfaces/C%23/SampleCode/EESPort/EESPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/EESPort/EESPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/EESPort/EESPortExample.java
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7.2.3 LOADING ERROR CONFIGURATIONS FROM FILE 

HIL User

:Error
Configuration

:EES
Configuration
FileReader

ErrorConfiguration (configuration_name)

EESConfigurationfileReader (fileName)

Load (configuration)

create an error 
configuration

load an existing EES 
error configuration

 

Figure 104 Sequence of example “load error configuration from file” 

In this sequence the error configuration is loaded from a file. The sequence shows how 
this is done using the error configuration file reader object. Other parts of usage, 
especially assignment of the error configuration to the EES port, downloading, starting, 
and stopping the configuration is independent from the creation. Therefore it is in principle 
the same as in the example above (see chapter 7.2.1). 

The sample code for this example will be found at 
 
C# C#/SampleCode/EESPort/EESPortExample.cs 
Python Python/SampleCode/EESPort/EESPortExample.py 
Java JAVA/SampleCode/EESPort/EESPortExample.java 
 

Technology_Reference_Interfaces/C%23/SampleCode/EESPort/EESPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/EESPort/EESPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/EESPort/EESPortExample.java
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7.3 SPECIAL HINTS 

7.3.1 EES HARDWARE LIMITATIONS AND EXTENSIONS 

The EES port handles the EES hardware in an abstract manner. Therefore it is limited to a 
defined set of functionality. Possibly the hardware supports additional functions that are 
not supported by the HIL API EES port. These functions are not accessible with means of 
HIL API. Additional functionality may be used within a test case using additional APIs of 
the EES implementation. But strict compatibility to HIL API is lost for test cases that make 
use of such extended functionality, of course. 
On the other hand, a specific EES hardware may lack some functionality that is defined by 
the HIL API. This is also a valid use case. The EES hardware respective port 
implementation is still HIL API compliant. In this case, the EES port returns an error when 
not implemented functions are used. HIL API compatible test cases can be executed but 
return an error due to lack of functionality of the underneath hardware ECU Port. 
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8 ECU ACCESS 

8.1 USER CONCEPT 

The ECU access part of the HIL API accesses an ECU via an MC system. It provides the 
following functionality: 

 Measurement and capturing 

 Calibration 

 Management of ECU memory pages 

The HIL API only communicates with the MC system, it does not communicate directly 
with the ECU. It is the task of the MC system to handle the communication with the ECU 
and to execute the methods defined by the HIL API. Therefore the HIL API does not need 
any knowledge about the interface being used for communication with the ECU (e.g. a 
CAN interface or a KWP2000 interface), and consequently this does not influence the 
code accessing the HIL API. Figure 105 illustrates this: 

ECU

C

Cali-
bration

M

Measure

MC-server

HIL API
 

 

Figure 105 Accessing ECUs via the HIL API 

The access to ECUs via the HIL API is done by two separate ECU access ports. Both 
ports are derived from the class Port (see Figure 106). These ports are: 
 

ECUMPort The ECUMPort class provides functionality for accessing 
measurement variables of an ECU. It also provides capturing 
functionality. 

ECUCPort The ECUCPort class provides functionality for reading and writing 
parameters of an ECU. It can also handle memory pages of an 
ECU.  
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class ECUPort

Port::Port

ECUMPort

+ ECUMPort()

+ getState() : ECUPortState

+ getTaskNames() : A_UNICODE2STRING[ ]

+ getVariableNames() : A_UNICODE2STRING[]

+ isReadable(variableName :A_UNICODE2STRING) : A_BOOLEAN

+ CreateCapture(task :A_UNICODE2STRING) : Capture

+ Read(variableName :A_UNICODE2STRING) : BaseValue

+ Start()

+ Stop()

ECUCPort

+ ECUCPort()

+ getState() : ECUPortState

+ getVariableNames() : A_UNICODE2STRING[]

+ isReadable(variableName :A_UNICODE2STRING) : A_BOOLEAN

+ isWriteable(variableName :A_UNICODE2STRING) : A_BOOLEAN

+ CalculateRefPageCRC() : A_UINT64

+ CalculateWorkPageCRC() : A_UINT64

+ GetDataType(variableName :A_UNICODE2STRING) : DataType

+ NumberOfPages() : A_UINT64

+ Read(variableName :A_UNICODE2STRING) : BaseValue

+ Start(loadingType :LoadingType)

+ Stop()

+ SwitchToRefPage()

+ SwitchToWorkPage()

+ Write(variableName :A_UNICODE2STRING, value :BaseValue)

 

Figure 106 The ECU port classes 

Both ports use the same state machine. The next chapters describe both ports and the 
state machines in more detail.  
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8.2 ECUCPORT 

The ECUCPort class provides functionality for reading and writing parameters of an 
ECU. It can also handle memory pages. 

8.2.1 STATES OF THE ECUCPORT 

Figure 107 illustrates the state diagram of the ECUCPort.  
There are two states, eOFFLINE and eONLINE. After creation, the ECUCPort instance 
is always in state eOFFLINE. The following table explains the states: 
 
eOFFLINE There is no connection to the ECU. 

Reading parameter values returns the values currently being stored 
in the server only, not coming from the ECU. 

Writing parameter values changes the values currently being stored 
on the server only and is not writing values to the ECU. 

eONLINE A connection to the ECU has been established. 

Reading parameter values returns the current values from the ECU. 

Writing parameter values changes the current values on the ECU. 

The Start(eLoadingType) method switches from the eOFFLINE state to the 
eONLINE state (see also chapter 8.2.4 for details). The Stop() method switches from 
eONLINE state back to the eOFFLINE state. 
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stm ECUCPort States

eOFFLINE

eONLINE

ECUCPort::Start(LoadingType)

ECUCPort::Read(A_UNICODE2STRING)

ECUCPort::Stop()

ECUCPort::Stop()

ECUCPort::Read()

ECUCPort::Start(LoadingType)

ECUPort::ECUCPort()

 

Figure 107 States of the ECU C port 
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8.2.2 ACCESSING ECU PARAMETERS 

The ECUCPort allows reading and writing of parameter values of the ECU. If a 
parameter value is readable can be determined by using the isReadable function. If a 
parameter also can be modified can be determined using the isWritable function. 

The following example shows how to read and write a scalar float ECU parameter value 
(see Figure 108). 

First the connection to the ECU is set up using the Start() method. The value of the 
LoadingType parameter is not important for this example, any value can be used. Then 
the data type of the variable is fetched using the GetDataType() method. The 
following assumes that the chosen parameter value is readable and writable. 

Then the new parameter value is written to the ECU. After writing, the current value of the 
parameter on the ECU is read back in order to check if it is the same value as the one 
which has been written. After that the connection to the ECU is stopped and the 
ECUCPort goes offline. 
 
The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\ECUPort\ ECUCPortExample.cs 
Python Python\SampleCode\ECUPort\ ECUCPortExample.py 
Java JAVA\SampleCode\ECUPort\ ECUCPortExample.java 
 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/%20ECUCPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUCPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUCPortExample.java
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HIL User

:ECUCPort

:FloatValue

ECUCPort()

Start (loadingType)

GetDataType (variableName) : DataType

Write (variableName, value)

isWriteable (variableName) : A_BOOLEAN

isReadable ( ) : A_BOOLEANvariableName

Read ( ) : BaseValuevariableName

getAttributes() : Attributes

getValue() : A_FLOAT64

create new ECU C 
port

initiate a download of the 
working and reference 
pages to the ECU for 
initialization (transition to 
eONLINE)

try to set a defined value

read calibration value 
and its attributes

Stop()
return to eOFFLINE

FloatValue (value)

 

Figure 108 Read and write a scalar float ECU parameter 
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8.2.3 GETTING THE LIST OF VARIABLES OF THE ECUCPORT 

This example describes how a user can get the names of all parameters supported by this 
ECUCPort instance. A call of the getVariableNames() method returns a list of all 
parameter names. 

HIL User

:ECUCPort
ECUCPort()

getVariableNames() : A_UNICODE2STRING[]

create new ECU C 
port

initiate a download of the 
variables

 

Figure 109 Get the list of parameters of an ECUCPort instance 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\ECUPort\ ECUCPortExample.cs 
Python Python\SampleCode\ECUPort\ ECUCPortExample.py 
Java JAVA\SampleCode\ECUPort\ ECUCPortExample.java 
 

8.2.4 MANAGE ECU MEMORY PAGES 

Another block of functionality of the ECUCPort is the management of ECU memory 
pages. 
Most MC tools support the handling of several memory pages. Each of these memory 
pages is able hold all parameter values of the ECU. Two of the most popular memory 
pages are the working page and a read-only reference page. The following list gives a 
short overview of the memory page management functions of the ECUCPort: 
 

 The NumberOfPages() method returns the number of pages which the current 
MC system supports. Most MC systems support 2 memory pages, a reference and 
a working page. 

 If more than 1 memory page is supported by the MC system, the 
SwitchToRefPage()method allows to switch from the working page to the 
reference page, and the SwitchToWorkPage()method allows to switch from 
the reference page to the working page. 

 To check if the contents of two memory pages are equal, the 
CalculateRefPageCRC() and CalculateWorkPageCRC() methods 
can be used. 

 In order to set up a connection with the ECU, the Start() method must be used. 
The LoadingType parameter defines if the content of the current memory page 
is downloaded to the ECU (eDOWNLOAD) or if the content of the actual page is 
filled with the data coming from the ECU memory (eUPLOAD). 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/%20ECUCPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUCPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUCPortExample.java
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Setting a variable value with the Write method in state eOFFLINE sets the value on the 
actual page. This value can be written to ECU with the Start(eDOWNLOAD) method. 
Setting the value of the same variable in state eONLINE changes the value on the ECU 
directly. 

The following example shows how to handle memory pages. 

After creation of the ECUCPort the transition to eONLINE is performed. Then the 
number of pages is fetched. In this case a value of 2 is expected, to make sure that a 
working and a reference page exist. Then the reference page is made the current memory 
page and the checksum is calculated. Then a parameter value from the ECU is read. After 
a switch to the working page, the checksum of the working page is calculated. The value 
of the same parameter is read again – this time coming from the working page. The 2 
values of the same variable can differ because they are coming from different memory 
pages. Then a new value is written to this variable and the checksum is calculated again. 
Now the value of the parameter on the ECU should be different to the checksum of the 
same page before. Finally, a call of the Stop() method executes a transition to the 
ECU port state to eOFFLINE. 
 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\ECUPort\ ECUCPortExample.cs 
Python Python\SampleCode\ECUPort\ ECUCPortExample.py 
Java JAVA\SampleCode\ECUPort\ ECUCPortExample.java 
 
 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/%20ECUCPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUCPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUCPortExample.java
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HIL User

:ECUCPort

:FloatValue

ECUCPort()

Start (loadingType)

NumberOfPages() : A_UINT64

getValue() : A_FLOAT64

CalculateRefPageCRC() : A_UINT64

SwitchToWorkPage()

Read ( ) : BaseValuevariableName

Write ( , value)variableName

SwitchToRefPage()

:FloatValue

Read (variableName) : BaseValue

CalculateWorkPageCRC() : A_UINT64

CalculateWorkPageCRC() : A_UINT64

FloatValue (value)

create new ECU C 
port

initiate a download of the 
working and reference 
pages to the ECU for 
initialization (transition to 
eONLINE)

switch to the reference 
page

get value of MaxRpm

get the number
of pages

calculate checksum 
(CRC)

switch to the working 
page

calculate checksum

modify MaxRpm 
parameter on the working 
page

calculate the checksum of 
the working page again - 
it should be different after 
the modification of the 
parameter

getValue() : A_FLOAT64
get value of MaxRpm

:FloatValue

Stop()
return to eOFFLINE

 

Figure 110 Handling of memory pages 
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8.3 ECUMPORT 

The ECUMPort is used for measuring and capturing variables of an ECU. The measuring 
can be done  

 As a snapshot using the Read() method, 

 By measuring of different variables in a specified raster (using Capture objects, 
see chapter 4.7). Use the CreateCapture()method to create capture objects. 

The getVariableNames()method returns a list of all available variable names of the 
ECUMPort instance. 
The getTaskNames()method returns a list of all available raster names of the 
ECUMPort instance. 

8.3.1 STATES OF THE ECUMPORT 

Figure 111 shows the state diagram of the ECUMPort. Like the ECUCPort, the state 
machine of the ECUMPort consists of two states: 
 
eOFFLINE There is no connection to the ECU. 

Capturing and reading ECU variable values are not possible. 
However, it is possible to create capture instances.  

eONLINE A connection to the ECU has been established. 

Reading ECU variable values is possible. Capturing can be started 
and stopped, without any influence on the ECU M port‟s state. 

 
The Start() method switches from the eOFFLINE state to the eONLINE state. 
The Stop() method switches from eONLINE state back to the eOFFLINE state. 
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stm ECUMPort stat...

eOFFLINE

eONLINE

ECUMPort::Start()

ECUMPort::Read(A_UNICODE2STRING)

Capture::Start(CaptureResultWriter)

Capture::Stop()

ECUMPort::Stop()ECUMPort::Start()

ECUMPort::CreateCapture()

ECUMPort::Stop()

ECUMPort::Read()

ECUMPort::ECUMPort()

 

Figure 111 States of the ECU M port 
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8.3.2 GETTING LISTS OF VARIABLE AND TASK NAMES 

The first example of the ECUMPort describes how a user can get the names of all 
variables and all tasks supported by this ECUMPort instance. 
After the creation of the port the methods getVariableNames() and 
getTaskNames() are called. 

HIL User

:ECUMPort
ECUMPort()

getVariableNames() : A_UNICODE2STRING[]

getTaskNames() : A_UNICODE2STRING[]

create new ECU M 
port

available measurement 
variables

available measurement 
tasks

 

Figure 112 Get lists of variable and task names 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\ECUPort\ECUMPortExample.cs 
Python Python\SampleCode\ECUPort\ ECUMPortExample.py 
Java JAVA\SampleCode\ECUPort\ ECUMPortExample.java 
 

8.3.3 READ A SCALAR VARIABLE VALUE AND ITS PROPERTIES 

This example shows how to read the value of a scalar ECU variable.  
The ECUMPort instance is switched to the eONLINE mode after creation. Then the 
measure value is fetched using the Read() method. After switching back to the 
eOFFLINE mode, the properties (e.g. name, unit, etc.) of the variable value are 
examined.  
 
 
The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\ECUPort\ECUMPortExample.cs 
Python Python\SampleCode\ECUPort\ ECUMPortExample.py 
Java JAVA\SampleCode\ECUPort\ ECUMPortExample.java 
 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/ECUMPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUMPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUMPortExample.java
Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/ECUMPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUMPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUMPortExample.java
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HIL User

:ECUMPort

isReadable (variableName) : A_BOOLEAN

Read (variableName) : BaseValue

getType() : DataType

:FloatValue :Attributes

getAttributes() : Attributes

getName() : A_UNICODE2STRING

getDescription() : A_UNICODE2STRING

getValue() : A_FLOAT64

getUnit() : A_UNICODE2STRING

GetProperty (name) : A_UNICODE2STRING

GetProperty (name) : A_UNICODE2STRING

check datatype 
infos

read measurement 
value

Start()

Stop()

transition to 
eONLINE

transition to 
eOFFLINE

 

Figure 113 Read a scalar variable value and examine its properties 

8.3.4 READ AN ARRAY VARIABLE VALUE AND ITS PROPERTIES 

Reading an array value is nearly the same as reading a scalar value. The value returned 
by the Read() method now is a VectorValue which can be read out index by index. 
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HIL User

:ECUMPort

isReadable (variableName) : A_BOOLEAN

Read (variableName) : BaseValue

getType() : DataType

:IntVectorValue :Attributes

getAttributes() : Attributes

getName() : A_UNICODE2STRING

getDescription() : A_UNICODE2STRING

GetValueByIndex (index) : A_INT64

getUnit() : A_UNICODE2STRING

GetProperty (name) : A_UNICODE2STRING

GetProperty (name) : A_UNICODE2STRING

check datatype 
infos

read measurement 
array (vector)

for each value

Start()transition to 
eONLINE

Stop()transition to 
eOFFLINE

 

Figure 114 Read an array variable value and examine its properties 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\ECUPort\ECUMPortExample.cs 
Python Python\SampleCode\ECUPort\ ECUMPortExample.py 
Java JAVA\SampleCode\ECUPort\ ECUMPortExample.java 

8.3.5 READ A MATRIX VARIABLE VALUE AND ITS PROPERTIES 

Reading a matrix value is nearly the same as reading an array value. The value returned 
by the Read() method now is a MatrixValue which can be read out using row and 
column indices. 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/ECUMPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUMPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUMPortExample.java
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HIL User

:ECUMPort

isReadable (variableName) : A_BOOLEAN

Read (variableName) : BaseValue

getType() : DataType

:Float
MatrixValue :Attributes

getAttributes() : Attributes

getName() : A_UNICODE2STRING

getDescription() : A_UNICODE2STRING

GetValueByIndex (columnIndex) : A_FLOAT64

getUnit() : A_UNICODE2STRING

GetProperty (name) : A_UNICODE2STRING

GetProperty (name) : A_UNICODE2STRING

check datatype 
infos

read measurement 
array (matrix)

for each value

Start()

Stop()

transition to 
eONLINE

transition to 
eOFFLINE

 

Figure 115 Read a matrix variable value and examine its properties 

The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\ECUPort\ECUMPortExample.cs 
Python Python\SampleCode\ECUPort\ ECUMPortExample.py 
Java JAVA\SampleCode\ECUPort\ ECUMPortExample.java 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/ECUMPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUMPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUMPortExample.java
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8.3.6 CAPTURING ECU VARIABLES 

For reading more than one variable value, including its timestamps, a capture object must 
be used. The following example illustrates this. 

A capture object always does the data acquisition using a specified raster. This raster is 
defined at creation time of the capture object using the CreateCapture() method. 
The subsequent call to setVariables() function defines which ECU variables shall 
be captured by this capture instance. 

Capturing can only be done in the eONLINE state, which is initiated by a call of the 
Start() method. Now the capturing can be started and stopped by the 
Capture.Start() and Capture.Stop() methods. When capturing has been 
finished, the ECUMPort instance can be switched back to the eOFFLINE state. A call to 
the Capture.getCaptureResult() function returns all captured variable values. 

See chapter 4.9 for more information about the Capture and CaptureResult 
classes. 

HIL User

:ECUMPort

:Capture

ECUMPort()

getVariableNames() : A_UNICODE2STRING[]

create new ECUPort

get all available variables 
and all available tasks

create capture with a 
specific task

set the list of variables to 
measure to the capture

getTaskNames() : A_UNICODE2STRING[]

CreateCapture (task) : Capture

:CaptureResult
MemoryWriter

setVariables(variableNames)

Start()

Start(writer)

Stop()

Stop()

getCaptureResult() : CaptureResult

create a writer to store 
the results

transition to eONLINE

start capturing

stop capturing

transition to eOFFLINE

get the results of the 
capturing

 

Figure 116 Capturing ECU variables 
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The sample code for this example will be found at 
 
C# C#\ASAM.HILAPI\SampleCode\ECUPort\ECUMPortExample.cs 
Python Python\SampleCode\ECUPort\ ECUMPortExample.py 
Java JAVA\SampleCode\ECUPort\ ECUMPortExample.java 

 

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/ECUMPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUMPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUMPortExample.java
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